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Abstract

Complex models in cardiac electrophysiology are com-
monly used to simulate cardiac action potential and car-
diac dynamics. However, their high complexity can lead
to significant computational costs and challenges in large-
scale simulations. Therefore, it could be interesting to find
simplified or alternative versions of cardiac cell models
that preserve the essential characteristics of the original
system, enabling efficient simulations. The identification
of these models must strike a balance between accuracy
and complexity, ensuring that critical aspects of electro-
physiology are preserved while maintaining simplicity and
reducing computational costs. In this work, we explore
the constrained formulation in PySINDy to identify car-
diac electrophysiology models as a proof of concept. The
constrained formulation allows the imposition of physi-
cally based conditions on the identified model terms and
coefficients, ensuring that certain principles or mathemat-
ical properties are preserved. In this work, we demonstrate
that polynomial formulations of the gating equations in the
classical Hodgkin–Huxley model can be derived using the
methodology developed in this work.

1. Introduction

The Hodgkin-Huxley (HH) model is an example of a
biophysical model that describes how action potentials in
neurons are initiated. It consists of a set of nonlinear or-
dinary differential equations (ODEs) that represent ionic
currents across the neuronal membrane based on voltage-
dependent conductance, and it is widely used to study the
electrical behavior of excitable cells [1]. Today, the HH
model serves as a foundational framework for numerous
cardiac electrophysiology cell models.

Data-driven approaches can be used to discover gov-
erning equations directly from time series data. Among
these, the Sparse Identification of Nonlinear Dynamical
Systems (SINDy) [2] method can identify compact and in-
terpretable models by assuming that the dynamics can be
expressed as a sparse combination of candidate functions
and coefficients. PySINDy is a Python library that imple-

ments this approach from input data and time derivatives
and a function library, which then applies a sparse regres-
sion technique to discover an equivalent system by assum-
ing the dynamics are governed by a sparse set of active
terms [3].

The original SINDy formulation does not allow the user
to incorporate prior knowledge about the system, so this
can be problematic in cases where parts of the system’s
dynamics are already consolidated by physical laws, such
as in biophysical models like Hodgkin-Huxley. To address
these limitations in this work, a constrained version of
the SINDy method was used, including prior structural or
physical knowledge by fixing or constraining some terms
during the regression process.

This work aims to apply the SINDy-constrained method
using the SR3 optimization algorithm with ℓ2-norm reg-
ularization to recover the Hodgkin-Huxley model from
noisy data. In our approach, we fix the equation for the
transmembrane potential, and identify alternative forms
for the gating variable equations. By doing so, we ensure
that the identified model remains biophysically plausible
while leveraging the flexibility of SINDy to discover the
remaining components of the system. This represents an
initial step toward the development of simplified and/or
reduced, data-driven models for cardiac electrophysiology
that retain interpretability and physiological relevance.

2. The Hodgkin-Huxley model

The Hodgkin-Huxley model consists of a set of nonlin-
ear differential equations that simulate the electrical be-
havior of neurons and cardiac muscle cells. The model is
represented by the following system of four ordinary dif-
ferential equations:

V̇ =
1

Cm
(Iion − INa − IK − IL + Iapp) , (1)

ṁ = αm(V )(1−m)− βm(V )m, (2)

ḣ = αh(V )(1− h)− βh(V )h, (3)
ṅ = αn(V )(1− n)− βn(V )n, (4)



where V represents the transmembrane potential, and αk

and βk for k = {m,n, h} are the following functions of
V :

αm = 0.1
25− V

exp
(
25−V
10

)
− 1

, (5)

βm = 4 exp

(−V

18

)
, (6)

αh = 0.07 exp

(−V

20

)
, (7)

βh =
1

exp
(
30−V
10

)
+ 1

, (8)

αn = 0.01
10− V

exp
(
10−V
10

)
− 1

, (9)

βn = 0.125 exp

(−V

80

)
. (10)

In the model m, h, and n are auxiliary variables for sodium
(Na+), and potassium (K+) currents, and Iapp denotes
an externally applied current. In addition, the currents are
defined as:

INa = gNam
3h(V − ENa), (11)

IK = gKn
4(V − EK), (12)

IL = gL(V − EL), (13)

which correspond to the sodium, potassium, and leak
currents. The following parameters were used in this
work: gNa = 120.0mS/cm2, gK = 36.0mS/cm2, gL =
0.3mS/cm2, ENa = 50.0mV, EK = −77.0mV, EL =
−54.4mV, and Iapp = 10.0µA/cm2.

3. Methodology

Here, we present some fundamental concepts of the
SINDy method and its computational implementation. In
particular, we will focus on the constrained version of the
algorithm, known as SINDy-constrained, which allows for
the incorporation of prior knowledge and physical con-
straints into the model identification process. This ap-
proach will be applied to identify the dynamics of the
Hodgkin-Huxley model.

3.1. Sparse Identification of Nonlinear Dy-
namics

SINDy is a data-based sparse identification method in-
troduced in [3] that combines sparse regression techniques
with a library of candidate nonlinear functions to identify
the underlying equations governing a dynamical system di-
rectly from data. As input, the method requires a set of
time series data from the variables of interest over time,

and as output, it provides a set of sparse differential equa-
tions.

The method works by assuming that the temporal evolu-
tion of a system can be described by a sparse combination
of candidate functions (such as polynomials or trigono-
metric functions). SINDy identifies which terms are most
relevant to capturing the essential dynamics, based on the
premise that many dynamical systems can be written as

d

dt
x = f(x) (14)

have dynamics f with only a few active terms and can be
approximated by the following linear combination:

f(x) ≈
p∑

k=1

θk(x)ξk = Θ(x)ξ, (15)

where Θ(x) is a library of candidate functions depend-
ing on the state x and the input u, and ξ are the coeffi-
cients. The sparse regression method aims to identify a
model with the fewest possible active terms in the set Θ,
that is, with only a few nonzero coefficients in ξ.

To evaluate Θ, a set of m measurements of the variables
x over time is taken and organized into matrices as follows:

X =
[
x(t1) x(t2) · · · x(tm)

]T
, (16)

In addition to these data, the method also requires the
time derivatives of x, which are organized in matrix form
as:

Ẋ =
[
ẋ(t1) ẋ(t2) · · · ẋ(tm)

]
. (17)

These time derivatives can be obtained directly from
the measurements, if available, or approximated using a
numerical differentiation method. Thus, the problem in
Equation (14), can be written in terms of data matrices as:

Ẋ ≈ Θ(X)Ξ, (18)

where Ξ is the coefficient matrix representing the model,
and Θ(X) is a matrix of candidate functions. This library
can be constructed from the data in X, as follows:

Θ(X) =
[
1 X ... Xd ... sin(X)

]
, (19)

where Xd denotes the matrix with column vectors com-
posed of all available time series of polynomial degree
d. The matrix Ξ stores the coefficients that determine the
magnitude of the candidate functions. That is, each col-
umn ξk of Ξ is a vector of coefficients that determines the
active terms in the k-th row of Equation (18).

To determine which model best fits the data, a sparse re-
gression is performed using the SR3-constrained algorithm
(Sparse Relaxed Regularized Regression) through the use
of a ℓ2 norm, aiming to minimize the difference between



the right and left-hand sides of Equation (18) [4]. For this,
we solve the following optimization problem:

min
Ξ,W

1

2
∥(Ẋ−Θ(X)Ξ)∥2 + λR(W) +

1

2ν
∥Ξ−W∥2, (20)

subject to Cξ = d, ξ = Ξ(:), (21)

where C is the constraint matrix and d is a vector con-
taining the prescribed values for the constraints, where λ
is the parameter that promotes sparsity. The auxiliary vari-
able W is introduced to relax the constrained problem of
estimating ξ, leading to a cost function that balances data
fit, sparsity, and a penalty (scaled by ν) enforcing W ≈ ξ
[5, 6].

3.2. Constraints

In this work, we employed the following types of con-
straints for model identification: one related to the V equa-
tion, which effectively fixes it to the original Hodgkin-
Huxley model equation (see equation (1)), and another re-
lated to the gating variables equations m, h and n. The
constraints related to V were used to essentially remove
the identification of the V equation from the process. The
constraints for the gating variables were such that in each
gating variable equation, only the corresponding gating
variable (either m, h, or n) and V terms appear in the equa-
tion, replicating the structure from the original model as
observed in equations (2)-(4). Also, we only allowed the
gating variable up to first power, to reproduce the structure
of the original formulation.

4. Results

The numerical experiments were performed using
PySINDy with the SR3 optimizer configured to enforce
equality constraints and applying an ℓ2-norm threshold-
ing. Synthetic data were generated from the Hodgkin-
Huxley model, and Gaussian noise was added to mimic
experimental conditions, with different amplitudes applied
to membrane potential and gating variables.

A noise amplitude of 1 mV was applied to the membrane
potential V , and 0.01 to the gating variables. The time
derivatives were calculated using high-order finite differ-
ences, while applying local smoothing to reduce noise in
the data.

A polynomial library of degree five was used to con-
struct candidate functions to match the original model,
where the equation V is also a fifth-order equation. The
constraints matrix was defined to restrict the active terms
in each identified equation, ensuring that prior structural
knowledge was incorporated directly into the model dis-
covery process.

With respect to noise, it was observed in the experiments
that, when no noise was provided, the method was not able

to identify any model capable of representing the original
system. When the noise level was increased to 20%, the
algorithm was able to discover models, but the responses
exhibited a noticeable delay compared to the original sys-
tem, leading to a time-shifted behavior. At 50% noise, the
identification process did provide a model. However, the
simulated response did not follow the curve of the original
system, and the overall fit was unsatisfactory. Therefore, a
noise level of 10% was adopted in the reported results.

To find a suitable model, the parameter λ was tested in
a range of [0.0, 10.0], shortening the subdivisions until the
best model was obtained, which was λ = 0.505, for the
regression problem defined by equation (20). With this
choice for λ, the following model was obtained:

V̇ = −6.383− 0.303V + 6060.000m3h (22)

− 2799.720n4 − 121.200V m3h− 36.360V n4

ṁ = 3.858 + 0.099V − 3.965m+ 0.001V 2 (23)

− 0.092V m− 0.001V 2m

ḣ = −0.002 + 0.001V − 1.013h− 0.010V h (24)
ṅ = 0.477 + 0.007V − 0.500n− 0.004V n. (25)

In the equations above, we report only the coefficients with
magnitudes greater than 10−4, as smaller-magnitude terms
were also present but could not be removed without com-
promising the stability of the identified model. This be-
havior warrants further investigation.

Figure 1 shows the numerical simulations of the action
potential and gating variables from both the identified and
original model (with noise), demonstrating a good agree-
ment between the identified model by SINDy and the orig-
inal HH model. We also conducted qualitative validations
of key action potential properties (all-or-none response, re-
fractory period, and sensitivity to initial conditions), con-
firming that the identified model provides an adequate rep-
resentation of the original system. Figure 2 shows the re-
sponse for different initial conditions.

5. Conclusions

In this work, we presented a sparse identification ap-
proach applied to the HH model for electrophysiology.
By constraining some terms, the identification process be-
comes more stable and was able to discover a polynomial
model for the gating variables. It also ensured that the re-
sulting model remains consistent with the known structure
of dynamics. The results showed that the SR3-constrained
method was effective in accurately identifying the system.

This work was conducted as a proof of concept for ap-
plying SINDy’s data-driven capabilities to electrophysiol-
ogy models, and the results encourage further exploration
toward model simplification, reduction, and discovery.



Figure 1. Simulations of the identified model (SINDy) (dashed) compared to the original HH data with noise (solid).
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Figure 2. Response of the discovered SINDy model under
different initial conditions.
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