Generation of Realistic Synthetic Electrograms for Atrial Fibrillation Analysis
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Abstract

This work presents a pipeline for generating realis-
tic synthetic electrograms (EGMs) simulating sustained
atrial fibrillation (AF) using openCARP. Patient-specific
cardiac meshes integrating fibrosis and fiber orienta-
tion, extracted from Late Gadolinium Enhancement Mag-
netic Resonance Imaging (LGE-MRI), enable high-fidelity
datasets for downstream tasks, such as diagnostic and
machine learning applications, complementing real-world
clinical data. A protocol is built to guarantee simulation
stability using different simulation resolutions, using the
Courtemanche cell model with ionic modifications to repli-
cate the electrophysiological behavior of AF. Sustained
AF is induced through multiple Archimedean spiral wave-
fronts, generating persistent reentrant activity. A virtual
catheter, randomly positioned on the atrial surface, col-
lects synthetic bipolar EGMs. The resulting signals ex-
hibit morphological features consistent with clinical AF.
In a blinded evaluation with five expert electrophysiolo-
gists, two experts could not reliably distinguish real from
synthetic EGMs, while three reported detecting patterns
suggestive of synthetic origin. These results indicate that,
although morphology aligns with clinical data, there are
patterns in the synthetic data that warrant further refine-
ment to enhance realism. This framework provides a repro-
ducible methodology that addresses data scarcity and sup-
ports the development of personalized AF treatment and
EGM analysis tools.

1. Introduction

Atrial fibrillation (AF) is the most prevalent sustained
cardiac arrhythmia and a major contributor to stroke, heart
failure, and other complications [1,2], yet the complexity
of the underlying mechanisms continues to challenge ef-
fective diagnosis and treatment [3].

Electroanatomic mapping remains the gold standard for
identifying arrhythmogenic substrates, but its clinical util-

ity is limited by invasiveness, equipment requirements,
and data scarcity [4]. Computational modeling and digital
twin approaches, informed by LGE-MRI for fibrosis and
fiber orientation, provide new opportunities for personal-
ized medicine and virtual trials [5, 6].

Synthetic data enables controlled exploration of AF
mechanisms, including varying fibrosis patterns and stim-
ulation protocols, and supports systematic evaluation of
therapeutic targets. Realistic synthetic EGMs further re-
veal the relationship between fibrotic patterns and reen-
trant circuits [7].

Building on prior work in AF simulation and EGM
generation [3, 8], this study introduces two key method-
ological enhancements to improve efficiency and real-
ism. First, the initialization protocol employs multiple
small Archimedean spirals to induce AF and incorpo-
rates a multi-resolution strategy: low-resolution pseudo-
bidomain simulations rapidly test whether AF stability can
be sustained, while high-resolution bidomain simulations
are used for precise EGM acquisition. Second, the vir-
tual catheter acquisition extends previous approaches by
modeling electrode dimensions and placement in full 3D
space while incorporating dynamic tissue-contact variabil-
ity, thereby reproducing amplitude fluctuations and signal
loss observed in clinical recordings. Together, these de-
velopments yield a reproducible framework for generating
personalized synthetic EGMs that complement real patient
data for research and therapeutic development.

2. Methods

Synthetic EGMs are generated by simulating atrial elec-
trophysiological behavior using the openCARP platform
and patient-derived anatomical data from LGE-MRI. The
pipeline induces sustained AF and records virtual EGMs
using a simulated catheter for subsequent expert evalua-
tion.

Electrical propagation is modeled using reaction-
diffusion formulations for cardiac tissue, following estab-
lished references [9, 10]. We adopt a computationally ef-



ficient pseudo-bidomain strategy, which combines an aug-
mented monodomain formulation to reproduce bidomain-
like wavefront morphologies [11].

2.1. Virtual Catheter and EGM Acquisi-
tion

To simulate EGM recordings, a method that accounts for
electrode geometry and dynamic tissue contact in a 3D tis-
sue is employed, inspired by previous work [12]. The po-
tential . at an electrode is computed using the transmem-
brane current I,,,. Using a discrete approximation with N
tissue points, the unipolar EGM is given by:
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where o, is the extracellular conductivity, p; is the position
of the i-th tissue point, e(t) is the electrode position, and
R(-) is the electrode transfer function.

Dynamic Electrode-Tissue Contact and 3D Position:
To capture dynamic contact variations observed in clinical
recordings, we model the electrode height above the tissue
as a time-varying function, h(t). The height is generated
as:
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Where hy,e is the base height, Ag, fi, and ¢ are the

amplitude, frequency, and phase of the sinusoidal compo-

nents, and 7)(¢) is a noise term. The electrode’s position at

time ¢, e(t), is calculated by displacing a position eq along

the local tissue normal vector, n:

e(t) = eg + Zmax - h(t) - 3)

where zyx 1s the maximum displacement height.

Electrode Transfer Function: The transfer function
R(-) for an electrode with diameter dy accounts for both
its physical characteristics and the time-varying height:

R(r, (t)) = 2 arcsin (l;l&)) @

where r = ||p; — e(t)|| is the Euclidean distance from a
tissue point to the electrode, and the denominator D(t) is
defined as:
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and z(t) = zmax - h(t) is the time-varying height of the
electrode.

This approach extends previous models by incorporat-
ing the full 3D geometry of both tissue and catheter while
explicitly modeling dynamic contact.

2.2.  Real Patient Data Modeling

Heart meshes derived from LGE-MRI provide the
anatomical substrate, with fibrosis obtained via Image In-
tensity Ratio (IIR) and fiber orientation mappings. Elec-
trophysiological behavior follows the Courtemanche atrial
cell model with AF-remodeling parameters [3, 13]. IIR
thresholds (e.g., [IR > 0.64) assign AF-remodeled proper-
ties, producing spatial heterogeneity in conduction [8]. We
vary fibrosis intensity and ionic parameters to modulate
conduction velocity and wavefront fragmentation, yielding
diverse synthetic patients.

We leverage two sources of clinical data. For in-
silico simulation inputs, we use patient-specific 3D meshes
from 100 AF patients (paroxysmal 43, persistent 41, long-
standing persistent 16) with fibers and fibrosis from LGE-
MRI [8]. For validation, we use catheter EGMs from
53 patients with persistent AF acquired with the Pen-
taRay® Multielectrode Mapping Catheter through a part-
nership with the Laboratory of Computer Science, Sig-
nals and Systems (I3S) in Sophia Antipolis, France. This
anonymized dataset is an expansion of the dataset from 16
patients with persistent AF [14], containing over 10,000
samples of EGMs recorded before ablation procedures and
is used during the blind-test evaluation.

2.3. Simulation Protocol

Persistent AF is simulated by defining electrical activity
generated by the atrial tissue itself using a cell voltage map.

The Universal Atrial Coordinates system [8] enables the
definition of electrical wavefronts by projecting them into
2D, where initial stimuli are defined and mapped back to
3D. This facilitates the creation of activation patterns of
rotors and reentrant activity [13].

A version, inspired by literature [8], employing eleven
small radius Archimedean spirals with opposing rotations
defined in 2D is used to induce sustained AF, generating
rotors leading to persistent reentrant activity. By control-
ling their radius and positions, variants of persistent AF
propagation can be created, increasing data variability.

A multi-resolution protocol is used. Once the parame-
ters are chosen, an activation map with Archimedean spi-
rals is created. Then, a low-resolution pseudo-bidomain
simulation runs for 5 cycle lengths (CL) to assess AF sta-
bility. The activation map during the last cycle is used to
determine if there is still activation in the mesh. If no acti-
vation is present, parameters are discarded as they are not
suitable to maintain a heart rhythm. If sustained activation
is confirmed, a high-resolution bidomain simulation is per-
formed for 2 CL, ensuring the activation patterns no longer
resemble the spirals, followed by 10 CL for synthetic EGM
acquisition.

After the simulation, a synthetic PentaRay catheter is



randomly placed on the atrial surface to record bipolar
EGMs using the acquisition method described, where vari-
ations in catheter-tissue contact are modeled, allowing col-
lected samples to contain patterns seen in clinical record-
ings.

2.4. Evaluation by Expert Electrophysiolo-
gists

To assess the realism of the synthetic EGMs generated
by the framework, a blind-test evaluation is conducted with
five expert electrophysiologists. A total of 20 samples
were presented per expert (10 real and 10 synthetic), each
sample consisting of a PentaRay multi-lead set with 10
bipolar EGMs. Samples are randomly selected from the
pool of real and synthetic samples. For real samples, we
filtered the dataset for samples classified as AF. Each ex-
pert classified each sample as either ”Real” or ”Synthetic”
alongside a justification for the classification. The objec-
tive was to determine if experts could distinguish between
real and synthetic EGMs and gather feedback on the rea-
sons for their classifications. The panel comprised experi-
enced electrophysiologists, all of them with more than five
years in practice, two with more than eight years, and two
with more than fifteen years.

3. Results

The framework successfully generated a dataset of an-
notated EGM samples from 37 patient-specific meshes.

Figure 1 provides a visual overview of key simulation
components. Panel (a) shows the IIR-based fibrosis distri-
bution on a representative mesh, highlighting how patient-
specific anatomical features, particularly fibrotic regions,
are incorporated. The two black shapes indicate the po-
sitions of the virtual PentaRay catheter within the mesh.
Panel (b) depicts the real PentaRay catheter, illustrating its
physical structure, which is accurately reproduced in the
virtual setup. The rotor dynamics during AF simulations
are summarized in panel (c), showing the temporal evolu-
tion of electrical activity from the initial tissue condition
to the induction and persistence of chaotic rotors and reen-
trant patterns. These dynamic simulations are initiated by
multiple Archimedean spirals, demonstrating the capabil-
ity of the framework to capture complex atrial fibrillation
mechanisms.

The simulation triggers sustained AF patterns, captur-
ing signals exhibiting fractionation and irregularity char-
acteristic of sustained AF. As seen in Figure 2, the result-
ing EGMs exhibit irregularities and fractionation consis-
tent with clinical observations.

Validation by Expert Electrophysiologists: Expert
performance varied across individuals (Table 1), precision
and recall reported are computed with respect to detecting
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Figure 1: Combined illustration of fibrosis mapping (top-
left), real Pentaray catheter (bottom-left), and 3D simu-
lated rotor dynamics (right).
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Figure 2: Example of synthetic EGMs under AF.

real samples (i.e., the positive class is “real”). Two ex-
perts operated near chance level, whereas three achieved
high performance, indicating the presence of residual cues
specific to the synthetic signals. Experts did not consis-
tently flag the same samples, suggesting heterogeneous,
sample-specific cues rather than a single obvious artifact.
Collected feedback suggests that samples with low ampli-
tude and change in polarity are not seen in clinical data, as
well as some synthetic samples containing activation pat-
terns not presented in clinical data.

4. Conclusion

This work presented a reproducible framework for gen-
erating realistic synthetic atrial EGMs, addressing data
scarcity in cardiovascular research. By integrating patient-



Table 1: Classification performance for detecting real sam-
ples (real = 1, synthetic = 0); n=20 samples per expert

Expert Accuracy (%) Precision (%) Recall (%)
Expert 1 55 53.8 70
Expert 2 55 54.5 60
Expert 3 90 90.0 90
Expert 4 95 90.9 100
Expert 5 80 87.5 70
Average 75 75.3 78

specific anatomical data, including fibrosis and fiber orien-
tation, with electrophysiological modeling in openCARP
combined with a strategy for catheter placement to emulate
clinical settings, the approach produces morphologically
plausible datasets consistent with clinical observations.

The evaluation yielded mixed results as detailed in Ta-
ble 1. The outcome suggests that synthetic signals are
not overtly artificial, but the high performance of some
experts, however, indicates the presence of cues that dis-
tinguish samples from real data. Experts did not consis-
tently flag the same samples, suggesting that these cues are
heterogeneous and sample-specific. Feedback highlights
that while the overall morphology is plausible, inconsis-
tencies in activation dynamics remain. Future work will
target the likely sources of residual cues, such as catheter-
tissue contact variability and improvements in the simula-
tion pipeline, including activation protocol.
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