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Abstract

Cardiovascular diseases, particularly Atrial Fibrilla-
tion (AF), remain a significant global health burden.
Despite advancements in diagnostic and treatment tech-
niques, the long-term success rates of AF ablation pro-
cedures remain suboptimal. This is primarily due to the
complexity of underlying mechanisms, challenges in accu-
rately identifying arrhythmogenic substrates, and the ef-
ficacy heavily relying on physician interpretation, which
contributes to variability in procedural outcomes. This
work addresses these limitations by leveraging machine
learning (ML) for the classification of persistent AF us-
ing multi-lead electrograms (EGMs). We investigate logis-
tic regression with handcrafted features, as well as con-
volutional neural networks (CNNs) and Long Short-Term
Memory (LSTM) networks designed to interpret trans-
formed EGMs and capture temporal dependencies, with
the aim of enhancing the accuracy of identifying regions
suitable for ablation. All three approaches show promise
in identifying persistent AF behavior, even in data-limited
settings. These results highlight the potential of ML to im-
prove diagnostic precision and support more effective, per-
sonalized ablation strategies for persistent AF.

1. Introduction

AF is the most common sustained cardiac arrhythmia,
affecting millions of people globally and significantly con-
tributing to stroke, heart failure, and other serious compli-
cations [1]. Ablation strategies aim to eliminate arrhyth-
mogenic sources and modify the atrial substrate to prevent
AF recurrence. One common strategy involves pulmonary
vein isolation (PVI), which focuses on eliminating high-
frequency pulmonary vein potential and creating a bidi-
rectional block to prevent ectopic pulmonary vein activity
from triggering AF [2].

Recent advancements in artificial intelligence (AI) and

machine learning (ML) have significantly impacted car-
diac medicine, particularly in managing complex cardiac
arrhythmias like persistent AF. These technologies are in-
creasingly used to enhance diagnostic accuracy, personal-
ize treatment, and improve procedural outcomes.

ML models can enhance cardiac ablation by accurately
identifying arrhythmogenic regions. Algorithms detecting
spatio-temporal EGM dispersion have improved success
rates in persistent AF, with tailored strategies achieving
higher one-year freedom from recurrence (88% vs. 70%)
compared to pulmonary vein isolation (PVI) alone, par-
ticularly in long-duration AF [3]. In addition, ML-based
patient stratification, such as uplift modeling, has iden-
tified persistent AF patients benefiting from more exten-
sive ablation (PVI-plus), yielding significantly lower re-
currence than standard PVI [4]. AI has also enhanced
diagnostic capabilities by objectively analyzing complex
electrophysiological data. CNNs have achieved high ac-
curacy (95.0%) in distinguishing rotational activation pat-
terns from intracardiac EGMs when converted to visual
image grids via Hilbert transforms, outperforming tradi-
tional statistical methods or support vector machines [5].

2. Methods

2.1. Real Data Used for Classification

The dataset used for classification is comprised of elec-
trograms from 53 patients with persistent atrial fibrilla-
tion, collected using the PentaRay® Multielectrode Map-
ping Catheter in partnership with the Laboratory of Com-
puter Science, Signals and Systems (I3S), Sophia Antipo-
lis, France. It extends a previous dataset of 16 patients [6],
now containing over 10,000 pre-ablation samples. Each
sample consists of a 2500 ms window from 10 catheter
leads, annotated by physicians during the procedure. La-
bels distinguish regions relevant for ablation (e.g., CFAE,
flutter, scar, or normal). In this work, scar tissue is ex-



cluded, and all non-normal conditions are grouped as AF
targets, yielding a binary classification problem. For each
sample, if any bipole is labeled as an AF target, the entire
sample is considered AF.

Extensive preprocessing was required to address dupli-
cation artifacts and synchronization issues. In collabora-
tion with physicians and the software provider, only sam-
ples collected between the initial tagging and the start of
ablation were retained, forming the Raw Dataset of 13,888
samples (1,035 AF; 12,853 non-AF) from 53 anonymized
patients.

As locations are tagged by the operator while the physi-
cian moves the catheter, the tagged location may not al-
ways represent the exact sample the physician wanted
tagged. Although this had no clinical impact, it can af-
fect model training, as the underlying electrical behavior of
the tagged region may not accurately reflect the intended
target. To address this issue, randomized samples were
reviewed and reclassified by a physician. This yielded the
Curated Dataset, with 430 samples (112 AF; 318 non-AF),
providing the most reliable labels. Both datasets are used
for training and evaluation: DL models are trained on the
larger Raw Dataset, due to the limited number of samples
on the curated version, while final evaluation relies on the
Curated Dataset.

2.2. Signal Processing Functions

Transformations are used to extract salient features.
This section describes the transformation techniques ap-
plied. Figure 1 summarizes the pipeline by showcasing
two representative transformation chains. First showing
the raw signal, then the signal after applying the Teager–
Kaiser (TK) operator with decimation and cutoff normal-
ization, and finally the same with squared pulses.

TK operator: This energy-based transformation en-
hances local transients by emphasizing instantaneous en-
ergy, which helps reveal abrupt events in EGMs [7].

Decimation: Decimation is a downsampling technique
that effectively decreases the temporal resolution while
preserving the overall structure and shape of the signal.

Cutoff Normalization: To suppress low-amplitude/no-
contact noise while retaining clinically relevant peak in-
formation, first, we use minimal amplitude and autocorre-
lation thresholds to determine if a lead contains an EGM
signal or pure noise due to a lack of contact between the
catheter and tissue. For leads that pass this first check,
we detect peaks and their boundaries within leads using
thresholds and rescale signal amplitude within each peak
window to [0,1], leaving the inter-peak baseline near zero.
This keeps peak timing, width, and fragmentation while
removing nuisance variability.

Squared Signal: This transformation highlights each
peak while simplifying the signal, each peak is converted

into a 0/1 pulse whose width equals the peak duration. This
makes the representation less sensitive to absolute ampli-
tude and simplifies downstream modeling. This transfor-
mation is used with normalized TK transformed signals
since it relies on positive signals with a maximum ampli-
tude of 1, where peaks occurs.

Figure 1: Example of Signal Transformations

(a) Raw signal

(b) TK + Decimation + Cutoff Normalization

(c) TK + Decimation + Cutoff Normalization + Squared Signal

2.3. Feature engineering

Feature engineering is used for simpler models and is
comprised of two primary components: the extraction of
statistical features from each bipolar EGM and pairwise
comparison between neighboring leads.

Statistical Measures: To characterize the signal’s dis-
tribution, central tendency, and variability a group of fea-
tures are used: Mean, Median, Mode, Standard Deviation,
Mean Absolute Deviation, Coefficient of Variation, In-
terquartile Range, Percentiles (5%, 25%, 50%, 75%, 90%,
95%), Skewness, Kurtosis, Jarque-Bera statistic, Number
of Peaks, Mean Peak Distance, and Standard Deviation of
Peak Distances.

Seasonal Decomposition: Seasonal decomposition iso-
lates trend, seasonal, and residual components of each sig-
nal using a convolution filter. The seasonal component
serves as input for calculating Dynamic Time Warping
(DTW) distances and cross-correlation metrics between
leads. DTW provides robust inter-lead distance measures,
while cross-correlation identifies time lags, highlighting
potential AF synchrony or delay patterns.

Pairwise Signal Comparison: All possible pairs
among the ten seasonal components are analyzed to ex-
tract maximum cross-correlation values and corresponding



lags. Minimum and maximum lag values across pairs are
retained to assess temporal alignment variability. Pairwise
feature differences are computed as normalized percent
differences to emphasize magnitude discrepancies, sup-
porting the detection of AF.

Complexity and Recurrence-Based Features: Addi-
tional features are derived using Recurrence Quantifica-
tion Analysis (RQA) and entropy metrics. RQA captures
dynamic patterns via features such as Determinism, Lam-
inarity, Recurrence Rate, Entropy, Trapping Time, and
various line-based statistics. Entropy features—Shannon
Entropy, Conditional Entropy, Dispersion, Phase Entropy,
and Slope Entropy—quantify signal complexity.

2.4. Data Augmentation and Balancing
Techniques

To improve robustness and address class imbalance, the
dataset was expanded through augmentation and balanced
with resampling strategies.

Augmentation: Two data augmentation strategies are
used. Lead rotation reorders the 10-lead EGMs using the
Pentaray catheter’s symmetric geometry, preserving inter-
lead relationships while producing up to 10 distinct spa-
tial configurations. Time reversal inverts the temporal se-
quence of all leads, improving temporal generalization.

Balancing: Class imbalance is mitigated through over-
sampling and undersampling, guided by a configurable
Class Imbalance Ratio (CIR) ranging from 0.5 (undersam-
pling) to 1.5 (oversampling), enabling flexible rebalancing
strategies.

2.5. Machine Learning Models

Three distinct machine learning model architectures are
investigated for the binary classification: logistic regres-
sion, a CNN, and an LSTM. These models are selected
based on their ability to capture spatiotemporal patterns
and provide interpretable baselines. The CNN and LSTM
models have a small number of parameters due to the
amount of samples available.
• Logistic Regression: This model leverages handcrafted
features extracted from EGMs instead of raw signal data.
Its simplicity and interpretability make it a valuable ap-
proach, especially in clinical settings where understanding
the model’s decision-making process is beneficial.
• Convolutional Neural Network A (CNN A): This com-
pact CNN architecture processes transformed time-series
EGM signals, which progressively reduce temporal reso-
lution while extracting local spatial patterns. The model
applies two convolutional blocks. The first block applies
a 2D convolution with a kernel size of (100 × 2), stride
(2 × 2), and ReLU activation, followed by max pooling,
batch normalization, and dropout. The second block uses

a kernel size of (25 × 1) with stride (2 × 1) and other-
wise identical structure. A final dense layer with sigmoid
activation produces the binary classification output.
• Long Short-Term Memory Network A (LSTM A):
This recurrent model is designed to capture temporal de-
pendencies in the EGM sequences. The model applies
layer normalization to the input, then employs two stacked
bidirectional LSTM layers, the first with 6 hidden units and
returning the entire sequence, and the second with 2 hid-
den units that outputs only the final state. Both layers use
recurrent dropout. A dense projection layer with 64 units
and ReLU activation expands the representation before ap-
plying dropout for regularization. A final dense layer with
sigmoid activation produces the binary classification out-
put.

2.6. Training and Evaluation Method

We evaluate with stratified 3-fold cross-validation using
patient-wise exclusive splits to avoid leakage from corre-
lated signals of the same patient. Stratification preserves
AF/non-AF label proportions in each fold, ensuring com-
parable class balance.

Models are evaluated using the F1-score as the primary
metric, which is particularly useful in datasets with class
imbalance. Additionally, accuracy, precision, and recall
are also reported to provide a comprehensive view of the
model’s performance.

We implement a comprehensive hyperparameter search
based on the Tree-structured Parzen Estimator (TPE) [8].
The search jointly optimized training hyperparameters
such as batch size, learning rate, but also, class imbalance
ratio (CIR), transformation pipeline choices and chaining,
feature-engineering options, data augmentation strategies,
and model architecture variants. Each configuration was
evaluated with the average test F1-score as the optimiza-
tion objective.

3. Results

From the Hyperparameter search process, two input
pipelines were ultimately considered (Table 1) as they
were associated with top-performing models according to
F1-Score

Method A: Applies the TK operator, decimation, and
cutoff normalization, producing a normalized, positive sig-
nal used for feature extraction (Figure 1b). All feature en-
gineering techniques described above are applied to this
transformed signal, resulting in 29 features designed to
capture key temporal and amplitude-based characteristics.

Method B: Extends Method A by appending the
Squared Signal step, converting each peak into a 0/1 pulse
that preserves timing/width while reducing amplitude sen-
sitivity (Figure 1c). No feature engineering is applied to



this representation. This transformation bounds the input
between 0 and 1, facilitating training stability and conver-
gence.

Table 1: Summary of Input Methods for Machine Learning

Method
Name

Signal Processing Steps Feature En-
gineering

A TK Operator → Decimation →
Cutoff Normalization

Yes

B TK Operator → Decimation
→ Cutoff Normalization →
Squared Signal

No

Table 2 presents the results for the top three model ar-
chitectures evaluated in this work.

Table 2: Classification Results on Persistent AF Targets

Model Params Recall (%) Precision (%) F1 (%)
CNN A 272 68.8 38.4 49.2
LSTM A 1,461 55.5 40.5 46.8
Logistic
Regression

29 85.9 40.2 54.7

4. Discussion

Despite the simplicity of logistic regression, it achieved
the highest F1-score, demonstrating the utility of tailored
feature extraction and careful regularization in limited data
settings. These findings suggest that interpretable mod-
els with engineered features can match or even exceed
more complex neural architectures when identifying per-
sistent AF behavior from EGMs. The CNN’s relatively
higher recall indicates greater sensitivity to AF patterns,
whereas the LSTM’s precision suggests better discrimina-
tion at the cost of recall. Parameter counts remain mod-
est across models (29-1,461), appropriate for the limited
dataset size and patient-wise splits. Limitations include la-
bel noise from procedural tagging, class imbalance, and
the absence of external validation.

5. Conclusion

This work presented ML approaches for the classifi-
cation of persistent AF targets using multipolar EGMs.
By comparing logistic regression with handcrafted fea-
tures against CNN and LSTM architectures, we demon-
strated that interpretable models, when combined with
careful preprocessing and feature engineering, can achieve
strong performance despite limited data availability. These
findings support the feasibility of integrating ML-driven

classification into ablation workflows, potentially assisting
physicians in identifying arrhythmogenic regions more ob-
jectively and consistently. Future work will expand the
dataset, incorporate prospective validation, and add ex-
plainability analyses to strengthen clinical interpretability
and adoption.

Acknowledgments

This work has been supported in part by the French
government, through the 3IA Cote d’Azur Investments in
the project managed by the National Research Agency
(ANR) with the reference number ANR-23-IACL-0001. V.
Zarzoso holds the ”IAblation” 3IA Chair. Support by the
CAPES-COFECUB program through project “INTERAC-
TION” (Ma-985-23) is also acknowledged.

References

[1] Brundel BJJM, Ai X, Hills MT, Kuipers MF, Lip GYH,
de Groot NMS. Atrial fibrillation. Nat Rev Dis Primers April
2022;8(1):21.

[2] Wellens HJJ. Pulmonary vein ablation in atrial fibrillation:
Hype or hope? Circulation November 2000;102(21):2562–
2564. ISSN 1524-4539.

[3] Deisenhofer I, Albenque JP, Busch S, Gitenay E, Mountan-
tonakis SE, Roux A, Horvilleur J, Bakouboula B, Oza S,
Abbey S, Theodore G. Artificial intelligence for individual-
ized treatment of persistent atrial fibrillation: a randomized
controlled trial. Nature Medicine February 2025;ISSN 1546-
170X.

[4] Sato T, Sotomi Y, Hikoso S, Kitamura T, Nakatani D, Okada
K, Dohi T, Sunaga A, Kida H, Matsuoka Y, Tanaka N, Watan-
abe T, Makino N, Egami Y, Oka T. Uplift modeling to iden-
tify patients who require extensive catheter ablation proce-
dures among patients with persistent atrial fibrillation. Sci-
entific Reports February 2024;14(1). ISSN 2045-2322.

[5] Alhusseini MI, Abuzaid F, Rogers AJ, Zaman JA, Baykaner
T, Clopton P, Bailis P, Zaharia M, Wang PJ, Rappel WJ,
Narayan SM. Machine learning to classify intracardiac elec-
trical patterns during atrial fibrillation: Machine learning of
atrial fibrillation. Circulation Arrhythmia and Electrophysi-
ology August 2020;13(8). ISSN 1941-3084.

[6] Ghrissi A, Almonfrey D, de Almeida RC, Squara F, Montag-
nat J, Zarzoso V. Data augmentation for automatic identifica-
tion of spatiotemporal dispersion electrograms in persistent
atrial fibrillation ablation using machine learning. In 2020
42nd Annual International Conference of the IEEE Engineer-
ing in Medicine Biology Society (EMBC). 2020; 406–409.

[7] Holambe R, Deshpande M. Nonlinear Measurement and
Modeling Using Teager Energy Operator. ISBN 978-1-4614-
1504-6, 02 2012; 45–59.

[8] Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for
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