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Abstract

Deep learning models can effectively reduce the impact
of movement artifacts in photoplethysmography (PPG)
signals from wearable devices. However, they require
large datasets, since they are often trained in a purely data-
driven way. We previously proposed an unfolded neural
network that integrates prior knowledge of the PPG sig-
nal’s sparse structure by encoding it into a sparse rep-
resentation with a learned dictionary of kernels. In this
study, we extend this framework by analysing how hy-
perparameters affect the extracted representations and the
model’s performance. We train the model using a synthetic
dataset based on the PulseDB dataset and test with daily
life signals from PPG-DaLiA. Our analysis suggests that
the sparsity parameter and the kernel size influence the
recruitment of kernels and the sparsity of their temporal
activations. Kernel size and dictionary size also affect the
denoising performance. On synthetic data, the method im-
proved the signal-to-noise ratio from –7.07 dB to 13.63
dB and reduced the heart rate mean absolute error (MAE)
by 74%. On the PPG-DaLiA, it lowered the MAE by 34%.
The proposed method outperformed the reference methods.
Our findings show that the proposed method effectively im-
proves the quality of PPG signals from wearable devices.

1. Introduction

Photoplethysmography (PPG) has emerged as a valid al-
ternative to electrocardiography (ECG) for cardiovascular
monitoring during daily life. While ECG requires elec-
trodes, which are not convenient for continuous monitor-
ing, PPG uses optical sensors that can be embedded in
wrist or finger-worn devices. Nevertheless, obtaining re-
liable cardiovascular parameters is challenging due to the
presence of movement artifacts (MAs).

Recently, deep learning methods, such as denoising au-
toencoders and generative adversarial networks (GANs)

[1] [2], have been shown to be effective for reducing the
impact of MAs. These methods extract features related to
the pulsatile PPG component and exploit them to eliminate
the MAs. However, they require large datasets because
they are trained in a purely data-driven way. Algorithm un-
folding [3] offers an alternative by embedding prior knowl-
edge into the network architecture rather than learning it
from intensive data. Hence, in our recent work [4], we pro-
posed a denoising method based on algorithm unfolding.
A convolutional sparse coding framework (CSC) encodes
the PPG into a sparse representation, leveraging the spar-
sity properties of the signal. Dictionary learning allows the
extraction of recurrent patterns in the signal, exploiting the
similarities between consecutive cardiac pulses.

When designing such a model, the hyperparameters not
only influence the performance, but also the features cap-
tured in the sparse representations and dictionary. For in-
stance, [5] showed that the parameter λ controlling the
sparsity of the representation also affects the learned dic-
tionary, since for smaller λ the kernels resemble short-time
patterns, while for larger λ they look like fuller templates
of the input signal. Therefore, in this study, we assess the
independent effect of the hyperparameters on the sparsity
of the representation and denoising performance. Finally,
the performance of the proposed method is compared with
that of the reference methods.

2. Methods

2.1. Dataset and preprocessing

We first created a synthetic dataset using the PulseDB
dataset [6], which comprises fingertip PPG from intensive
care units (ICUs) sampled at 125 Hz. For each subject, 400
10-s segments were selected, and subjects were randomly
split into training (70%, 2024 subjects), validation (15%,
434 subjects) and test (15%, 436 subjects) sets. Assuming
minimal MAs in ICU recordings, PulseDB signals were
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Figure 1: Architecture of the proposed model with yn the
noisy PPG, XK the sparse code and ŷ the reconstructed
PPG. The encoder (light blue) has K folds, each with con-
volutional layers W1,k and W2,k, and learned thresholds
θk. The decoder (red) stores the learned dictionary D.

used as clean references, and synthetic MAs were added
using the model from [7] with one MA per PPG segment
with random onset and duration. To test the method with
real-life MAs, the PPG-DaLiA dataset [8] was used, which
provides wrist PPG and ground-truth heart rate (HR) from
the ECG of 15 subjects during daily activities.

The following preprocessing steps were applied. The
recordings from PPG-DaLia, provided with a sampling
rate of 64 Hz, were upsampled to 125 Hz to match the sam-
pling rate of the synthetic dataset. The signals from both
datasets were filtered with a 4th-order Chebyshev type II
band-pass filter between [0.5, 18] Hz and normalized in
amplitude between 0 and 1.

2.2. Learned convolutional sparse coding

A typical PPG signal consists of a series of events, such
as the systolic peak, the dicrotic notch and the diastolic
peak. It can thus be viewed as a superimposition of com-
ponents, each of which is zero everywhere except when the
event occurs. This suggests that the signal has an underly-
ing sparse structure.

In our previous work [4], we proposed to denoise
PPG signals using a learned convolutional sparse coding
method. This method incorporates knowledge about the
signal structure by modelling the PPG signal according to
a CSC model. The core idea of the CSC model is that the
signal is represented as a sum of convolutions between a
dictionary of kernels D and their temporal activations en-
coded in the sparse code X . Promoting sparsity over X
ensures that only a few kernels from D are selected, and
that their temporal activations are localized in time. The
CSC model can be formulated as follows:

ŷ = D ⋆X , (1a)

with D ⋆X =

M∑
i=1

di ∗ xi , ∥X∥0 ≪ N ·M , (1b)

where ŷ ∈ RN is the reconstructed PPG signal, the dictio-
nary D ∈ RL×M constitutes M kernels with kernel size L,
and the sparse code X ∈ RN×M constitutes the kernels’
temporal activations xi ∈ RN.

Table 1: Configurations of hyperparameters used in the
experiments with L kernel size, λ sparsity parameter and
M size of the dictionary.

L ∈ {0.2, 0.4, 0.8, 1.6} s λ = 0.05 M = 32
λ ∈ {0.005, 0.01, 0.05, 0.1} M = 32 L = 0.4 s
M ∈ {4, 8, 16, 32} L = 0.4 s λ = 0.05

The architecture of the learned convolutional sparse
coding method is reported in Figure 1. The encoder was
implemented using the deep unfolded iterative shrinkage
algorithm by Van Sloun et al. [9], which adapts the LISTA
architecture [3] to the convolutional case:

Xk+1 = τθk (W1,k ∗ yn +W2,k ∗Xk) , (2)

with yn the noisy PPG signal, W1,k ∈ RL×1×M, W2,k ∈
RL×M×M convolutional layers and τθk the smooth soft-
thresholding function [10] with learned thresholds θk ∈
RM. The sparse code XK obtained after K folds was then
fed to a single-convolutional layer decoder D ∈ RL×M×1

that implements equation 1a, as proposed in [11].

2.3. Experiments and evaluation metrics

The model was trained using the mean squared error
loss, with kernels constrained to have unit norms to avoid
the vanishing of XK . Sparsity was promoted by apply-
ing l1-norm regularization on XK with sparsity parameter
λ. l2-norm regularization with parameter 10−3 was ap-
plied to W1,k and W2,k to avoid overfitting. Adam opti-
mizer was used with learning rate 10−4, batch size 256,
and early stopping based on the validation loss. To prevent
exploding gradients caused by the large network’s depth,
the norms of the gradients were clipped to 10.

We conducted a series of experiments to evaluate the
effect of the kernel size L, the sparsity parameter λ, and
the number of kernels M . Multiple models were trained,
where each parameter was varied individually while keep-
ing the others fixed, as reported in Table 1.

Three sparsity-related metrics were computed to assess
the distribution of the nonzero elements across the repre-
sentation. The first metric ntot was the number of nonzero
elements in the sparse code, i.e. its l0 norm, which mea-
sures the overall sparsity of the representation. The second
metric nker measured the sparsity in terms of the num-
ber of selected kernels by counting the number of xi that
have at least one nonzero element. This metric was used
to evaluate how the hyperparameters affect the recruitment
of the kernels. The last sparsity-related metric nact was
the l0 norm of the xi of the selected kernels. In that way,
we focused only on the sparsity of the temporal activations,
quantifying the support over which the kernels were active.

Two additional metrics were computed to evaluate the
denoising performance. First, the quality of the reconstruc-
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Figure 2: Effect of hyperparameters on (a) l0 norm of the
sparse code ntot, (b) number of selected kernels nker, (c)
l0 norm of the xi of the selected kernels nact, (d) SNR,
and (e) MAEHR. The means ± standard deviation of the
metrics are reported. Each point denotes a trained model,
with colours indicating the varied hyperparameters.

tion was assessed using the signal-to-noise ratio:

SNR = 10 log10

( ∑N
i=1 y

2∑N
i=1(ŷ − y)2

)
, (3)

where y is the clean PPG and ŷ is the reconstructed PPG.
We further assessed the performance by measuring the
mean absolute error (MAE) between the HR measured
from the i-th reconstructed PPG segment HRŷi and the one
measured from the clean PPG segment HRyi

:

MAEHR =
1

W

W∑
i=1

|HRŷi
−HRyi

| , (4)

where W is the number of segments per subject. The peak
detection, which was used to calculate the HR, was done
using the Neurokit2 toolbox [12].

3. Results and discussion

3.1. Effect of hyperparameters

The effect of the hyperparameters was examined using
the synthetic validation set. Figures 2a to 2c report the
sparsity-related metrics. Focusing on the kernel size L,

ntot decreased with increasing L, meaning that the overall
sparsity of the sparse code increased. The increase in spar-
sity was not due to a smaller number of selected kernels,
but rather to sparser temporal activations, as nker remained
almost stable, while nact generally decreased with L. This
might be because large kernels require being activated less
frequently, since each kernel spans a large support of the
signal. Considering the sparsity parameter λ, as expected,
a larger λ increased the overall sparsity of the represen-
tation, indicated by the decreasing ntot. Contrary to the
effect of L, this time the increase in sparsity was caused
by the fact that the algorithm recruited fewer kernels, as
shown by the decreasing nker. Instead, the increasing nact

indicates that the temporal activations became less sparse,
because fewer kernels were used, but they were activated
more frequently to span the temporal support of the sig-
nal. The size M of the dictionary did not seem to have a
significant effect on the sparsity of the representation. ntot

remained indeed stable with M , while nker and nact did
not show any clear trend with M .

Figures 2d and 2e report the denoising metrics. The de-
noising performance improved with increasing L and M ,
as shown by the increasing SNR and decreasing MAEHR.
This is because larger L and M translate to a higher num-
ber of trainable parameters, which increases the flexibility
of the model to capture complex dependencies in the data,
but also the risk of overfitting. In our experiments, varying
λ within the range 0.005 to 0.1 did not lead to noticeable
differences in the performance. One possible explanation
is that, with λ within this range, the reconstruction term re-
mains the dominant component of the loss, hence the net-
work is still able to produce good quality reconstructions.

3.2. Comparison reference methods

The model’s performance was compared to the convo-
lutional denoising autoencoder (CDA) [1] and the fully
connected GAN (FC-GAN) [2] (see [4] for implementa-
tion details). The methods were evaluated on the syn-
thetic test set using both the SNR and MAEHR, while only
the MAEHR was assessed on the PPG-DaLia dataset. We
used the proposed model with hyperparameters L = 1.6,
λ = 0.05, and M = 32, as larger kernel sizes improve the
performance (see Sec. 3.1). The matched-pairs Wilcoxon
signed-rank test was used to evaluate statistically signifi-
cant differences between each reference method (including
without denoising) and the proposed method. We tested
the alternative hypothesis that each reference method had
significantly smaller SNR or larger MAEHR than the pro-
posed method.

The denoising metrics are reported in Table 2. The pro-
posed method improved the signal quality and the accu-
racy of the HR, as shown by the significantly higher SNR
than the signals without denoising in the synthetic dataset,



Table 2: Mean ± standard deviation of the SNR [dB] and
the MAEHR [bpm] without denoising (W. d.) and after
applying each method on the synthetic and PPG-DaLiA
datasets. Stars indicate that the reference method yields a
statistically significantly smaller SNR or larger MAEHR

than the proposed method (* p < 0.01 and ** p < 0.001).

Synthetic dataset PPG-DaLiA
SNR MAEHR MAEHR

W. d. −7.06±8.44∗∗ 12.48±5.44∗∗ 11.29±4.39∗∗

CDA 7.39±4.38∗∗ 9.67±6.45∗∗ 12.03±4.29∗∗

FC-GAN 10.00±4.39∗∗ 5.72±5.12∗∗ 9.48±5.09∗

Proposed 13.63±5.54 3.21±2.79 7.40±3.57

and the smaller MAEHR in both datasets. It also obtained
a significantly larger SNR and smaller MAEHR than the
CDA and FC-GAN methods across both datasets, achiev-
ing the best denoising performance.

Considering the limitations of the study, the synthetic
MA model may not fully capture the complexity of real
MAs, as denoising was more challenging on the PPG-
DaLiA dataset, where all methods yielded lower SNR
and higher MAEHR. Despite the limitations of the syn-
thetic data used during training, the proposed method still
achieved a considerable improvement in the MAEHR of
the PPG-DaLiA dataset.

4. Conclusion

In this work, we denoised PPG signals using an un-
folded neural network that incorporates prior knowledge
about the signals’ sparse structure. We found that the ker-
nel size affects the sparsity of the kernels’ temporal activa-
tions, while the sparsity parameter influences the number
of selected kernels. The denoising performance increases
with both the kernel size and the dictionary size. The pro-
posed method significantly improved the signal-to-noise
ratio and mean absolute error of the heart rate measure-
ment, and outperformed the reference CDA and FC-GAN
methods. These results demonstrate that the method effec-
tively reduces the impact of the MAs on PPG signals from
wearable devices.
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