From Signals to Graphs: A Novel Approach for Intelligent ECG Audit
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Abstract

Electrocardiograms (ECGs) are crucial for cardiac di-
agnostics, but current audit practices often employ ran-
dom selection, resulting in inefficiency and overlooking
valuable analytical insights. To optimize resource alloca-
tion and enhance audit outcomes, a targeted approach is
needed, prioritizing ECGs with high diagnostic ambigu-
ity or clinical relevance. This study introduces an auto-
mated method for identifying such high-utility ECGs using
graph-based features derived from visibility graphs and
time series features. By transforming ECGs into graph
representations and using their time series properties, we
enhance the discrimination of four key conditions: right
bundle branch block (RBBB), left bundle branch block
(LBBB), sinus tachycardia (ST), and sinus bradycardia
(SB). These features capture complex, non-linear relation-
ships in ECG data, enabling more nuanced clustering than
conventional methods. Our approach not only streamlines
medical audits by targeting the most informative ECGs but
also demonstrates the untapped potential of graph theory
combined with time series in cardiac diagnostics. By re-
ducing reliance on random sampling, this method can im-
prove audit efficiency by over four times, reducing costs,
and ultimately supporting better clinical decision-making.

1. Introduction

The 12-lead electrocardiogram (ECG) is central to car-
diac diagnosis, yet audit workflows often rely on random
or convenience sampling, which yields few contentious
cases and low diagnostic discordance (12%) [1]. Target-
ing exams that are more likely to be ambiguous can make
audits markedly more informative. In prior work, we clus-
tered ECG signal embeddings and increased the discor-
dance rate to 38.9% [2]. However, latent representations
offer limited clinical interpretability, limiting subsequent
analysis and clinician confidence.

In this paper, we propose an alternative that combines
graph and time-series features for targeted audit selection.
We transform ECGs into visibility graphs (VGs) [3] and
extract topological features, complemented by time and
frequency statistics computed directly from the signals.
While VGs have been explored mainly for supervised clas-
sification [4], their use to drive unsupervised selection of
ambiguous exams for audits remains underexplored. Our
central hypothesis is that this joint, feature space separates
typical from atypical exam patterns better than dense em-
beddings alone, increasing the yield of diagnostically am-
biguous cases and exposing an ambiguity gradient aligned
with cluster cohesion. We validate this against a strong
embedding baseline, showing improved identification of
high-utility ECGs for review while preserving clear signal-
to-feature mappings that support clinical interpretation.

2. Method

2.1. Dataset

We used the CODE-15% [5] dataset, a large public
collection of 12-lead ECGs. Our analysis focused on
four prevalent conditions: Sinus Tachycardia (ST), Sinus
Bradycardia (SB), Right Bundle Branch Block (RBBB),
and Left Bundle Branch Block (LBBB). We selected these
four conditions because they are phenotypically coher-
ent and amenable to unsupervised grouping, two sinus
rhythm variants and two conduction block patterns. For
each condition, we created a balanced dataset containing
all available exams with that single label, plus a set of
50,000 ECGs labeled as normal sinus rhythm, following
the methodology of our previous work.

2.2.  Feature Engineering

To create a comprehensive representation of each ECG,
we engineered a hybrid feature set designed to capture
complementary aspects of cardiac dynamics. This set com-
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Figure 1. End-to-end pipeline for targeted ECG audit selection.

bines topological properties derived from visibility graphs
with classical statistical descriptors from the raw time se-
ries. For each exam, features are extracted on a per-
lead basis and later concatenated to form the final high-
dimensional representation.

2.2.1. Graph-Based Topological and Struc-
tural Descriptors

Our primary innovation lies in transforming each ECG
lead’s time series into a visibility graph (VG), a method
that maps temporal patterns into a network topology [3].
Each sample point (¢;,y;) in the signal becomes a node,
and an edge connects two nodes (¢, y,) and (¢p, yp ) if they
have direct "line-of-sight,” as defined by:
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Figure 2. Illustration of the Visibility Graph transforma-
tion.

From each generated VG, we compute a rich suite of

descriptors. These metrics are chosen to quantify the com-
plexity, connectivity, and regularity of the underlying ECG
signal. They are grouped into three main categories:
o Unweighted Topological Metrics: Statistics describ-
ing the graph’s fundamental structure, including the mean,
standard deviation, skewness, and kurtosis of the node de-
gree distribution, graph density, and assortativity. These
features capture the overall connectivity patterns.

« Weighted Graph Metrics: Descriptors that incorporate
the Euclidean distance between connected nodes as edge
weights. This category includes statistics on edge weight
and node strength distributions, providing insight into the
magnitude of temporal and voltage variations.

o Regularity and Community Structure Proxies: Met-
rics such as the global clustering coefficient and degree en-
tropy, which serve as proxies for signal regularity and the
presence of repeating, structured patterns within the ECG
waveform.

2.2.2. Statistical Time and Frequency-Domain
Descriptors

To complement the topological information, we extract
a set of well-established statistical features directly from
the preprocessed time series of each lead. These descrip-
tors provide a foundational view of the signal’s morphol-
ogy and rhythm.

In the time domain, we characterize the signal’s ampli-
tude distribution and morphology using the mean, standard
deviation, skewness, kurtosis, and range (min/max) of the
signal amplitude. We also compute the mean and stan-
dard deviation of the first derivative to capture the rate of
change. Rhythm regularity is assessed via the coefficient
of variation of RR-intervals.

In the frequency domain, we analyze the spectral power
distribution derived from Welch’s periodogram. Key fea-
tures include the power ratios in the low-band (0-15 Hz)
and mid-band (15-50 Hz), the spectral centroid, and the
spectral entropy, which together describe the concentration
and complexity of the signal’s frequency components.

The complete feature vector for an exam is formed by
concatenating these descriptors across all 12 leads, result-
ing in a final representation with 432 features (36 fea-



tures/lead x 12 leads).

2.3. Feature selection with AUC

The high-dimensional feature space, resulting from the
combination of graph-based (228) and time-series (204)
descriptors, required dimensionality reduction to avoid
noise and redundancy. We adopted a univariate strat-
egy based on the Area Under the ROC Curve (AUC),
computed separately for each pathology (ST, SB, RBBB,
LBBB). Features were ranked by their Separation Power,
|[AUC — 0.5|, which reflects how well a variable distin-
guishes pathological from normal exams, independent of
whether higher or lower values indicate disease. This en-
sured that both positively and negatively associated fea-
tures were valued equally.

To further refine the set, we removed redundant vari-
ables by iteratively discarding those with strong correlation
(|| > 0.90) to higher-ranked ones, ensuring diversity and
reducing multicollinearity. From the resulting ranked lists,
the six most informative and non-redundant features were
retained for each pathology. Finally, all selected features
were standardized using z-scoring, so that they contributed
equally to subsequent distance-based clustering.

2.4. Dimensionality Reduction and Clus-
tering

The selected feature vectors first underwent dimen-
sionality reduction using Uniform Manifold Approxi-
mation and Projection (UMAP)[6]. Subsequently, the
low-dimensional embeddings were clustered using HDB-
SCAN[7], a density-based algorithm adept at identifying
clusters of varying shapes and sizes while effectively han-
dling noise. For each pathology, its corresponding feature
vectors were clustered alongside a baseline set of 50,000
vectors from normal exams.

Our central hypothesis is that exams belonging to a spe-
cific pathology, but assigned by HDBSCAN to the pre-
dominantly “normal” cluster, represent atypical or clini-
cally ambiguous cases. To ensure optimal performance,
the hyperparameters for both UMAP and HDBSCAN were
systematically tuned using the Optuna framework to max-
imize key clustering validation metrics.

To quantitatively evaluate the performance of our clus-
tering model, we used the Fl-score as an external vali-
dation metric, assessing the alignment between the gener-
ated clusters and the ground-truth diagnostic labels in the
database. Defined as the harmonic mean of precision and
recall, the F1-score provides a balanced measure of the al-
gorithm’s ability to correctly assign exams to their respec-
tive pathological or normal classes.

2.5. Clinical Validation of the Ambiguity
Gradient

Beyond the quantitative metrics, our main objective was
to assess the clinical relevance of the cluster structure. We
hypothesized that diagnostic ambiguity is inversely related
to an exam’s cohesion within its pathological cluster. To
test this, we adopted a three-tiered sampling strategy based
on the membership probabilities assigned by HDBSCAN.

We selected 351 diseased ECGs across four pathologies
(84 LBBB, 81 RBBB, 88 SB, and 98 ST), stratified into
three groups:

1. Core Group (n = 165): High-probability cases within
the pathological cluster (36 LBBB, 39 RBBB, 25 SB, 65
ST).

2. Borderline Group (n = 100): Exams at the cluster
fringe, closer to the normal group (40 LBBB, 20 RBBB,
20 SB, 20 ST).

3. Deviated Group (n = 86): Cases misclassified into the
normal cluster, representing the most ambiguous exams (8
LBBB, 22 RBBB, 43 SB, 13 ST).

Each group was independently re-evaluated by senior
cardiology students, and the clinical discordance rate was
computed as the percentage of diagnoses diverging from
the original database labels. This stratified design enabled
a direct and interpretable assessment of the proposed am-
biguity gradient across the cluster structure.

3. Results and Discussion

We first evaluated our model’s ability to separate patho-
logical exams from normal ones. As shown in Table 1, the
graph and time-series features significantly outperform the
embedding-based baseline for conditions characterized by
distinctive morphological changes. For RBBB and LBBB,
the F1-Scores increased to 0.9639 and 0.9691, respec-
tively. This indicates that topological descriptors from vis-
ibility graphs capture the structural signal distortions typ-
ical of conduction blocks more effectively than latent em-
beddings.

In contrast, for thythm-based conditions such as Sinus
Bradycardia (SB) and Sinus Tachycardia (ST), our method
reached F1-Scores comparable to or slightly below the
baseline. This suggests that embeddings may be more ef-
fective at capturing differences driven by a single global
attribute like heart rate, whereas our broader feature set
reflects finer variability within each group. Although this
leads to lower separation in clustering, it also highlights
the presence of ambiguous or borderline cases, precisely
the type of exams that benefit most from targeted audit, as
examined in the next analysis.



Table 1. Clustering F1-Score comparison.

Condition Baseline Selected Features
ST 0.9338 0.9180
SB 0.9146 0.7793
RBBB 0.9173 0.9639
LBBB 0.9367 0.9691

These borderline cases were then assessed in a dedicated
clinical validation, summarized in Table 2. The results
confirm a distinct ambiguity gradient: the Core group, rep-
resenting typical cases, demonstrated high clinical concor-
dance rates across all conditions (75.4% to 87.2%). As
expected, the Borderline group showed intermediate and
varied concordance (35.0% to 55.0%), confirming its sta-
tus as a collection of structurally ambiguous cases.

The most significant result lies in the analysis of the
Deviated group. The concordance for this group was ex-
ceptionally high for Sinus Bradycardia (SB) at 69.8% and
for Sinus Tachycardia (ST) at 53.8%. This directly cor-
relates with their lower Fl-scores and demonstrates that
our method successfully flags a concentrated subset of di-
agnostically challenging cases that are ideal for expert re-
view.

Table 2. Clinical Concordance Rates (%) Across Stratified
Ambiguity Groups, based on the clinical audit.

Core Group Borderline Deviated Group
Condition (Concordance) (Concordance) (Concordance)
LBBB 80.6% 35.0% 12.5%
RBBB 87.2% 55.0% 31.8%
SB 80.0% 50.0% 69.8%
ST 75.4% 40.0% 53.8%

To contextualize these findings, we directly compare
our results against the embedding-based baseline from our
previous work, which achieved an average discordance
rate of 45.78% for the four abnormalities. Our proposed
method demonstrates a marked improvement. The Bor-
derline group, which represents exams at the fringe of
pathological clusters, yielded an average discordance rate
of 55.0%. More strikingly, the Deviated group achieved
an even higher average discordance rate of 58.03%. This
outcome is crucial as it quantitatively validates that our
graph and time-series feature set surpasses the perfor-
mance of dense embeddings in identifying diagnostically
contentious cases. Furthermore, it confirms the existence
of a practical ambiguity gradient. By targeting the Devi-
ated group, auditors can focus on a highly concentrated
pool of exams where diagnostic disagreement is highest,
maximizing the efficiency and learning potential of the re-
view process.

4. Conclusion

This paper introduced a novel method for intelligent
ECG audit selection by combining visibility graph topol-
ogy with time-series descriptors. Our approach success-
fully creates an“ambiguity gradient,” identifying a concen-
trated subset of exams with high diagnostic uncertainty.
The exams most likely to be misclassified by our model
(the Deviated group) yielded a clinical discordance rate of
58.03% upon expert review. This result is a marked im-
provement over the 12% discordance typical of traditional
random sampling, making our targeted selection process
more than four times more efficient at surfacing the most
clinically relevant cases for discussion. By focusing expert
attention where it is most needed, our framework offers a
simple, effective, and clinically justifiable route to more
efficient and impactful ECG auditing. Future work will
evaluate approximate graph constructions and alternative
density estimators and extend to additional diagnoses.
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