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Abstract

As part of the George B. Moody PhysioNet Challenge
2025, team MIWEAR developed an approach for de-
tecting Chagas disease from 12-lead electrocardiograms
(ECGs). Using ResNet-18 with five-fold cross-validation,
we estimated sample confidence and curated a subset
by retaining only high-confidence positives and nega-
tives. A large-scale ECG foundation model pretrained on
over ten million recordings was then fine-tuned, along-
side EfficientNet-B0O and ResNet-18 trained on the curated
data. Model predictions were fused by averaging. Cross-
validation confirmed that confidence-based sampling im-
proved the performance. The standalone ECG foundation
model achieved a Challenge score of 0.379 on the hidden
validation set, ranking 7th, underscoring strong transfer-
ability under distribution shifts. A fusion model guided by
the foundation model reached the highest score of 0.400
on the training set, demonstrating the value of integrating
complementary architectures to boost accuracy and reduce
variance. These findings show that foundation models pro-
vide a reliable backbone, while fusion enhances stability,
offering a competitive strategy for ECG-based Chagas dis-
ease detection.

1. Introduction

We participated in the 2025 George B. Moody Phy-
sioNet Challenge, which invited teams to develop auto-
mated, open-source algorithms for identifying Chagas dis-
ease from electrocardiograms (ECGs) [1,[2]. While sero-
logical testing is the gold standard for diagnosis, ECG-
based interpretation provides a scalable and cost-effective
screening alternative, particularly in resource-constrained
settings.

The availability of large-scale public ECG databases,
including CODE-15, SaMi-Trop, PTB-XL, REDS-II, and
ELSA-Brasil [3H7], has enabled the development of data-
driven approaches for this task. However, these datasets
differ substantially in labeling quality, class balance, and
demographic coverage. In particular, weakly labeled sam-

ples from large cohorts pose challenges for effective model
training, as naive use of these data may amplify label noise.

Our team, MIWEAR, designed an approach that com-
bines confidence-guided sample selection with deep neu-
ral networks to address these issues. Instead of discarding
weakly labeled data entirely, we sought to extract reliable
subsets by leveraging prediction confidence. This strategy
allowed us to mitigate noise while still benefiting from the
scale of large databases. We then integrated pre-trained
ECG foundation models with conventional deep architec-
tures, and employed ensembling to enhance predictive ro-
bustness.

In this paper, we describe our methodology in detail,
present results from cross-validation and hidden validation
evaluation, and discuss the advantages and limitations of
our approach in the context of Chagas disease detection.

2. Methods

2.1. Data Preprocessing

All recordings from the training databases were first
parsed into a unified metadata table containing the record-
ing length, source, age, sex, and diagnostic label. To
ensure data quality, we excluded samples shorter than
2900 samples (corresponding to approximately 7.25 s at
400 Hz).

Because the CODE-15% subset was both substantially
larger than the other datasets and contained weaker labels,
we applied random undersampling to reduce its prevalence
in the training pool. Specifically, a fixed fraction of CODE-
15% samples was retained, while all samples from the
other databases were preserved. This step aimed to alle-
viate dataset imbalance and reduce the influence of noisy
or uncertain labels.

For demographic attributes, we mapped sex into binary
form (male = 1, female = 0) and retained patient age as a
continuous feature. When demographic information was
missing or ambiguous, we set its value to a missing indica-
tor rather than discarding the record, in order to maximize
data usage.

Each electrocardiogram (ECG) signal was then stan-



dardized into a 12-lead format (I, II, III, aVR, aVL, aVF,
V1-V6). We reordered channels accordingly and dis-
carded non-standard leads. To mitigate baseline wander
and high-frequency artifacts, we applied median filtering
to each lead. Signals were subsequently resampled to
400 Hz to unify sampling frequency across databases.

After resampling, amplitudes were normalized on a per-
lead basis using min—max scaling,
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where ¢ = 10~° prevents division by zero. This approach
scales each lead into [0, 1] while preserving inter-lead dy-
namics. To account for noisy outliers, we additionally re-
placed undefined values with zeros.

Finally, each signal was truncated or zero-padded to a
fixed length of 4096 samples (=10.2 s), ensuring consis-
tent input dimensions for model training. This representa-
tion provides sufficient temporal context while controlling
memory footprint. The resulting dataset consisted of a ten-
sor with shape (N, 12,4096), accompanied by diagnostic
labels and demographic covariates. To address class im-
balance, we computed positive class weights as the ratio
of negative to positive samples and applied them during
loss calculation.

2.2. Confidence-Based Sample Selection

Label noise and heterogeneity across datasets can
severely affect supervised training. To mitigate this, we
used a ResNet-18 trained with five-fold cross-validation to
generate probability estimates for all samples in the first
stage. Let p; denote the probability of sample ¢ being pos-
itive. The selection criteria were:
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where Qg5 and @5 are the 95th and 5th percentiles of
the distribution of predicted probabilities. P and N are
the selected positive and negative samples. To balance the
dataset, the number of final negatives |A/| was chosen as
95 x |P|. This procedure ensured that the curated subset
contained only highly reliable labels.

We evaluated multiple sampling ratios (2%, 10%, 50%,
66%, and 100%) to understand the trade-off between sam-
ple reliability and diversity. Empirically, 50-100% sam-
pling offered the best balance, while extremely low ratios
reduced coverage.
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Figure 1. Overview of the Model Framework.

2.3.  Model Architectures

Three models were trained independently to capture
complementary representations of the electrocardiogram
(ECG) signals, the model structure is shown in FigurdT}

« Foundation Model: The ECG foundation model was
constructed using over ten million 12-lead electrocardio-
gram recordings from more than one million patients, an-
notated with 150 diagnostic labels [8]. A RegNet-based
architecture was adopted to capture both temporal dynam-
ics and spatial correlations across leads. The model was
trained with a multilabel classification objective and in-
cluded strategies to handle incomplete annotations and
improve robustness. In addition, single-lead augmenta-
tion was incorporated to enhance adaptability for wear-
able and mobile applications, yielding expert-level per-
formance across diverse diagnostic tasks and providing a
versatile backbone for downstream use. Building on this
foundation, we performed full fine-tuning of the network
using our curated high-confidence dataset. Both the back-
bone parameters and the classification layer were updated
during training, enabling the model to better adapt to the
specific task of Chagas disease detection.

« EfficientNet-B0: A compact convolutional neural net-
work (CNN) optimized for parameter efficiency [9)]. We
adapted this architecture for one-dimensional physiolog-
ical signals by replacing image-based convolutions with
temporal convolutions, allowing the model to extract
multi-scale temporal features with minimal computational
cost.

o ResNet-18: A residual CNN architecture [[10] that facil-
itates gradient propagation through shortcut connections.
We employed this network both as a baseline for model
comparison and as a robust classifier for sample selection
and downstream prediction.

2.4. Training Strategy

All the high-confidence samples were used to train the
three models in the second stage. All models were trained
with binary cross-entropy loss. The Adam optimizer was




used with learning rate 103, and a ReduceLROnPlateau
scheduler adjusted the rate dynamically. Mini-batch size
was 64-512 depending on GPU memory. To improve gen-
eralization, we applied the following augmentations:

o Random cropping within the 10-s window.

o Lead masking, where 1-2 channels were randomly
dropped.

o Amplitude scaling, multiplying signals by factors be-
tween 0.9 and 1.1.

For downstream adaptation, we fine-tuned the ECG
foundation model on three distinct categories of curated
high-confidence datasets, allowing the network to adjust
its representations to the specific distributions of Chagas-
related signals.

2.5.  Fusion Strategy

While each model demonstrates strong performance in-
dividually, their error patterns and feature representations
differ, suggesting potential gains from combining their
outputs. Inspired by recent ensemble learning studies [[11]],
we designed a fusion strategy for the ECG foundation
model, EfficientNet-BO and ResNet-18. Specifically, we
assigned the same weights to the three models in the aggre-
gation process and used the auxiliary models to refine deci-
sion boundaries and reduce model-specific variance. This
foundation model-guided ensemble leverages the strong
generalization ability of the pretrained backbone while in-
corporating the diversity of lightweight CNNs, resulting in
improved robustness and stability across folds. For infer-
ence, we applied the fusion to obtain the weighted proba-
bilities.

3. Results

Table[I]summarizes our results. The baseline ResNet-18
trained on 10% CODE-15% samples without demographic
information achieved a cross-validation (CV) score of
0.308 and 0.310 on the hidden validation set, demonstrat-
ing limited predictive capacity when trained with restricted
data. Incorporating demographic features (e.g., age and
sex) and increasing the proportion of training data pro-
vided modest improvements, with scores rising to 0.355
under a 50% sampling regime. These results suggest that
demographic priors contain complementary information,
but their contribution alone is not sufficient to close the
performance gap.

In contrast to shallow baselines, strategies that lever-
aged high-confidence sampling and pretrained represen-
tation models consistently demonstrated superior perfor-
mance. In particular, our standalone ECG foundation
model achieved a Challenge score of 0.379 on the hidden
validation set, securing 7th place on the leaderboard. This

Model Training | Validation | Test
ResNet-s10 0.308 0.310 -
ResNet-s50-d 0.355 0.333 -
ResNet-2stage 0.371 - -
EfficientNet-2stage 0.393 0.326 -
ECGFounder-2stage | 0.391 0.379 -
Fusion 0.400 0.368 -

Table 1. Challenge scores for team MIWEAR across dif-
ferent model configurations. Training scores are obtained
by 5-fold cross-validation (CV) on the public training data.
Validation scores correspond to the official hidden valida-
tion set. Test scores and final rankings will be updated after
the conference. ResNet-s10 indicates ResNet-18 trained
with 10% randomly sampled CODE-15% data. ResNet-
$50-d includes 50% sampled CODE-15% data with de-
mographics. “2stage” refers to high-confidence sampling
with a two-stage training scheme. ECGFounder-2stage de-
notes models initialized from ECG pretraining. Fusion
(Confusion-2stage) indicates a weighted ensemble of mul-
tiple two-stage models.

result highlights the strong transferability of foundation-
model-based representations for clinical ECG signals,
even when trained under conditions of noisy labels and
dataset heterogeneity. The foundation model’s robust-
ness suggests that large-scale pretraining captures funda-
mental electrophysiological patterns that can be effectively
adapted to downstream diagnostic tasks.

Beyond single models, we investigated ensemble learn-
ing as a means to further improve generalization. A fusion
model guided by the ECG foundation model achieved the
highest observed Challenge score of 0.400 on the train-
ing set, surpassing all individual models in terms of peak
accuracy. The fusion design integrated predictions from
diverse architectures while assigning dominant weight to
the ECG foundation model, thereby preserving its dis-
criminative capacity while exploiting complementary in-
ductive biases from other networks. Although the ensem-
ble did not outperform the standalone foundation model
on the hidden validation set, it exhibited improved robust-
ness across cross-validation folds and reduced suscepti-
bility to model-specific overfitting. We hypothesize that
this trade-off—sacrificing a small amount of peak hidden-
validation accuracy in exchange for greater fold-to-fold
stability—may prove advantageous when models are de-
ployed on unseen clinical cohorts, where distribution shifts
and rare pathological patterns are common.

4. Discussion and Conclusions

Our results show that confidence-based sample selec-
tion is a practical and effective strategy for mitigating label
noise in large-scale ECG datasets. By prioritizing high-



confidence examples, the models were less affected by
mislabeled or ambiguous data, leading to more stable train-
ing and consistent improvements across folds.

The ECG foundation model proved to be the most com-
petitive single-model solution, achieving a Challenge score
of 0.379 on the hidden validation set and ranking 7th over-
all. This emphasizes the strong transferability of pretrained
ECG representations, which capture generalizable features
even in the presence of distributional shifts.

Beyond individual models, a fusion model guided by the
ECG foundation model reached the highest score of 0.400
on the training set. While its hidden validation perfor-
mance did not surpass the standalone foundation model,
the ensemble improved robustness across folds and re-
duced model-specific variance. This suggests that ensem-
bles can complement foundation models, though more so-
phisticated fusion strategies (e.g., adaptive weighting or
uncertainty-aware methods) may be required to fully ex-
ploit model diversity.

Incorporating demographic information such as age and
sex yielded only limited benefits, likely due to incom-
plete or inconsistent metadata. Future work should in-
vestigate tighter multimodal integration, dynamic confi-
dence thresholds for sample selection, and adaptive en-
semble weighting to further enhance generalization. De-
spite these challenges, our framework achieved competi-
tive performance, highlighting the promise of foundation-
model-based approaches as a backbone for robust and gen-
eralizable ECG classification.

Taken together, these findings point to three overarching
conclusions. First, foundation models provide a substantial
performance advantage over conventional CNN baselines,
underscoring their value in ECG representation learning.
Second, data curation through high-confidence sampling
is indispensable for mitigating label noise and ensuring re-
liable supervision in real-world clinical datasets. Third,
fusion strategies enhance robustness and reduce variance,
though their design requires careful consideration: an
ensemble dominated by the foundation model improves
stability but may dilute peak accuracy, while lighter fu-
sions can preserve higher scores but remain less stable
across folds. Future work should explore adaptive weight-
ing schemes and hybrid architectures that reconcile these
trade-offs, aiming to deployment reliability in clinical
practice.
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