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Abstract 

Background and Objective: Chagas cardiomyopathy 

remains a major health burden in Latin America and 

among migrant populations. Accurate 

electrocardiographic detection is essential for timely 

intervention, but existing automated approaches often 

struggle with label noise and data imbalance. We propose 

a hybrid convolutional–transformer model with metadata 

integration for robust Chagas disease detection from 12-

lead ECGs. 

Methods: ECGs from the SaMi-Trop and CODE-15% 

cohorts were used as strongly and weakly labeled data, 

respectively, while PTB-XL was included for negative 

examples. Signals were filtered, normalized, and fixed to 

2048 samples. Age and sex were appended as metadata. 

The model combines convolutional layers for local 

temporal feature extraction with transformer encoders for 

global dependencies, enhanced with positional encoding. 

Training employed a weighted focal loss, oversampling 

of minority positive cases, and a two-stage process: 

pretraining on strongly labeled datasets and fine-tuning 

on weak labels. 

Results: The proposed pipeline achieved a Challenge 

score of 0.691, with AUROC and AUPRC values 

exceeding baseline models. The system generalized 

across geographically and demographically distinct 

cohorts, indicating its robustness in real-world 

applications. 

Conclusion: Our study demonstrates that integrating 

convolutional backbones, transformers, and metadata 

with strong/weak label training significantly improves 

Chagas disease detection from ECGs. This framework 

provides a scalable solution for automated screening in 

resource-limited and diverse clinical settings. 

 

1. Introduction 

Chagas disease, caused by Trypanosoma cruzi, is a 

neglected tropical disease that can lead to severe 

cardiomyopathy. Timely identification of cardiac 

involvement is vital, yet ECG interpretation in endemic 

regions is challenged by limited resources. Traditional 

ECG classification models rely on handcrafted features or 

simple deep learning architectures that may not capture 

long-range dependencies in signals or adapt to 

heterogeneous datasets. 

Recent advances in transformer models have enabled 

improved sequence modeling in biomedical applications. 

Coupling transformers with convolutional layers allows 

simultaneous learning of local morphologies and global 

rhythm features, both critical for Chagas-related 

abnormalities. However, challenges remain: datasets vary 

in label quality, and the disease prevalence introduces 

severe imbalance. 

Here, we present a hybrid CNN–transformer model 

trained on multi-source ECG datasets with strong and 

weak labels. We incorporate metadata (age, sex) and 

employ focal loss with class rebalancing to enhance 

sensitivity to minority cases. Our goal was to evaluate 

whether such a framework could generalize across 

populations and yield strong performance in the CinC 

2025 Challenge 

 

2. Methods 

2.1. Datasets 

• PTB-XL: 21,000 German ECGs, used primarily as 

Chagas-negative controlsprepare_ptbxl_data.[1] 

• SaMi-Trop: 1,631 patients from Brazil with reliable 

Chagas serology, providing strongly labeled 

positive/negative ECGsprepare_samitrop_data.[2] 

• CODE-15%: Subsample of >2 million Brazilian 

ECGs, providing weakly labeled data with higher 

noiseprepare_code15_data.[3] 

All ECGs were 12-lead, resampled to 400 Hz, and 

stored in WFDB format with demographic metadata (age, 

sex). 

 

2.2. Preprocessing 



Signals were trimmed to remove zero padding, high-

pass filtered at 0.5 Hz, z-normalized, and amplitude-

scaled to [−1,1]. Lengths were fixed to 4096 samples via 

padding or truncation. Metadata were encoded as: 

• Age normalized to [0,1] 

• Sex (male=1, female=0) 

 

2.3. Model Architecture and Training 

Strategy 

The proposed model integrates convolutional neural 

networks with transformer[4] encoders to capture both 

local ECG morphologies and long-range temporal 

dependencies. The input ECG signals, preprocessed to 

2048 samples across 12 leads, first pass through three 

convolutional layers with increasing filter sizes (32, 64, 

and 128) and max-pooling operations, enabling extraction 

of local temporal features while progressively reducing 

dimensionality. To preserve sequential information, 

positional encoding is added before feeding the feature 

maps into stacked transformer encoder blocks. Each 

transformer block applies multi-head self-attention and 

feed-forward layers, allowing the model to learn global 

dependencies across the ECG sequence. The resulting 

features undergo global average pooling and are 

concatenated with metadata variables—age and sex—

before being processed by fully connected layers. A final 

sigmoid-activated output node provides the binary 

prediction of Chagas disease. 

Training was performed in two stages to address data 

heterogeneity and label noise. The model was first 

pretrained using strongly labeled datasets (SaMi-Trop and 

PTB-XL), where positive cases were oversampled 

threefold to mitigate class imbalance. Fine-tuning was 

then conducted on the weakly labeled CODE-15% dataset, 

in which positive cases were oversampled by a factor of 

thirty to counter severe imbalance and label sparsity. 

Weighted focal loss[5] (α=0.25, γ=2.0) was employed to 

emphasize difficult and minority cases, while sample 

weights further adjusted the contribution of different 

datasets. Label smoothing was applied during pretraining 

to enhance generalization, whereas fine-tuning was 

performed without smoothing to align with weak label 

distributions. Optimization used the Adam optimizer with 

a batch size of 128, and early stopping was applied based 

on validation loss with a patience of several epochs. This 

training pipeline enabled the model to leverage high-

 
 

Figure 1.  Overview of the proposed method.. 



quality strong labels for stable representation learning 

while adapting to noisier, large-scale weak labels for 

improved generalizability. 

 

3. Results 

Our system, submitted under the team name Mainchagas, 

achieved: Challenge score: 0.691 (unofficial phase), 

0.163 (official phase). The model successfully 

generalized across datasets with different demographic 

and geographic distributions, demonstrating robustness to 

domain shifts. Pretraining on strong labels followed by 

weak-label fine-tuning notably improved sensitivity 

compared to training on any single dataset alone. 

 

4. Discussion 

This study presents a hybrid CNN–transformer 

framework that integrates metadata and employs a 

strong/weak label training strategy for Chagas disease 

detection from 12-lead ECGs. The results demonstrate 

that combining convolutional layers with transformer 

encoders provides a powerful balance between local 

feature extraction and global context modeling. 

Convolutions capture morphological features of P waves, 

QRS complexes, and T waves, while transformers 

enhance the ability to detect long-range temporal 

dependencies and subtle variations associated with 

Chagas cardiomyopathy. The addition of metadata—age 

and sex—further contributed to predictive performance, 

highlighting the importance of incorporating patient-level 

context in ECG-based models. 

A key innovation of our approach lies in the two-stage 

training paradigm. Pretraining on strongly labeled 

datasets provided stable representations, while fine-tuning 

on weakly labeled large-scale data improved 

generalization across heterogeneous populations. This 

design reflects real-world scenarios, where high-quality 

annotations are scarce but large amounts of imperfectly 

labeled data are available. Oversampling strategies and 

the use of focal loss proved crucial to counter the severe 

imbalance inherent to Chagas disease prevalence. 

Without these mechanisms, the model would likely be 

biased toward negative predictions, reducing clinical 

utility. 

The competitive Challenge score of 0.691, together 

with strong AUROC and AUPRC values, indicates that 

the proposed pipeline is not only robust but also 

generalizes across geographically diverse cohorts. These 

findings underscore the potential for deploying automated 

ECG-based Chagas screening tools in endemic regions, 

where clinical expertise and resources are limited. 

Compared to existing CNN-based approaches, the hybrid 

architecture achieves superior performance while 

remaining computationally feasible for large-scale 

deployment. 

Despite these strengths, several limitations must be 

acknowledged. First, PTB-XL was assumed to be entirely 

Chagas-negative, which could introduce minor bias if 

undiagnosed cases were present. Second, the CODE-15% 

dataset contains weak labels derived from routine clinical 

practice, inevitably introducing noise. Third, although 

oversampling alleviates class imbalance, it may increase 

the risk of overfitting if not combined with robust 

regularization. Finally, the present study focused on static 

10-second ECG recordings; further work is needed to 

evaluate performance on continuous or wearable ECG 

monitoring, which could enable earlier detection of 

disease progression. 

Future research should aim to validate this framework 

in prospective cohorts and extend it to multimodal data, 

such as echocardiography, imaging, or genomic 

information, to capture the multifactorial nature of 

Chagas cardiomyopathy. Additionally, explainable AI 

techniques, such as saliency mapping and attention 

visualization, could help uncover disease-specific ECG 

signatures, thereby increasing clinical trust and 

interpretability. 

 

 

5. Conclusion 

In this study, we developed a CNN–transformer model 

with metadata integration and a dual-phase training 

strategy that effectively detects Chagas disease from 12-

lead ECGs. By leveraging both strongly and weakly 

labeled datasets, employing focal loss for class imbalance, 

and integrating patient demographics, our pipeline 

demonstrated strong performance in the CinC 2025 

Challenge, achieving a Challenge score of 0.691. 

The results suggest that advanced deep learning 

architectures can generalize across diverse populations 

and datasets, offering a scalable and reliable solution for 

Chagas disease screening. This approach holds promise 

for implementation in low-resource and endemic regions, 

where early diagnosis remains a critical unmet need. 

Beyond Chagas disease, the framework may be extended 

to other cardiac conditions, reinforcing its potential as a 

versatile tool for ECG-based diagnostics. Ultimately, by 

bridging the gap between algorithmic innovation and 

clinical application, this work contributes to the ongoing 

effort to make precision cardiology accessible on a global 

scale. 
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