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Abstract 

Background and Objective: Accurate detection of 

Chagas cardiomyopathy from electrocardiograms (ECGs) 

is critical for timely intervention, particularly in 

resource-limited settings. While conventional methods 

rely on handcrafted features or limited lead information, 

we explore the effectiveness of transformer-based deep 

learning models to detect Chagas disease from 12-lead 

ECGs across multiple populations and datasets. 

Methods: We developed a hybrid CNN-transformer 

model to classify Chagas cardiomyopathy from 12-lead 

ECG signals. The model architecture begins with a series 

of convolutional layers to extract local temporal patterns, 

followed by max-pooling to downsample the feature maps. 

This is followed by stacked transformer encoder blocks 

that capture global dependencies across the signal 

through multi-head self-attention and feed-forward 

convolutional layers. The output is aggregated using 

global average pooling and passed through fully 

connected layers before producing a sigmoid-activated 

binary classification output. The model was trained using 

ECGs from the SaMi-Trop and CODE-15% datasets and 

PTB-XL dataset.. 

Results: The transformer classifier demonstrated 

strong generalization. Our team Mainchagas achieved 

challenge score of 0.691. These results suggest that the 

model can identify Chagas-related patterns in ECGs, 

even when evaluated on geographically and 

demographically distinct datasets. 

Conclusion: This study highlights the potential of 

transformer-based architectures for robust ECG 

interpretation in the context of Chagas disease. The 

pipeline's performance across diverse datasets 

underscores its viability for deployment in scalable 

screening programs. 

 

1. Introduction 

Cardiovascular diseases (CVDs) represent the most 

significant cause of global mortality, accounting for 

nearly 18 million deaths each year. [1, 2]. Conditions 

such as coronary artery disease, heart failure, arrhythmias, 

and hypertensive heart disease contribute to this burden. 

Early detection and precise diagnosis are essential to 

improve patient outcomes and reduce the risk of severe 

complications [3, 4]. Electrocardiograms (ECGs) remain 

a central tool for identifying cardiac abnormalities [5]. 

However, conventional approaches often treat ECGs as 

1D signals, limiting the ability to apply advanced image-

based learning techniques that have transformed computer 

vision [6, 7]. To overcome this limitation, Gramian 

Angular Field (GAF) transformation has been proposed to 

convert 1D ECG signals into 2D representations. This 

technique preserves temporal dynamics while enabling 

the use of powerful convolutional and modern image-

based neural networks. In this study, we examine the 

utility of GAF transformations for ECG classification, 

with particular emphasis on dual-lead configurations. Our 

goal is to achieve a balance between diagnostic accuracy 

and computational efficiency, offering a framework 

suitable for scalable clinical and wearable applications. 

 

2. Methods 

The experimental workflow for this study consists of 

several key stages, starting from data acquisition to the 

final evaluation of classification performance (Figure 1). 

The process begins with the use of the PTB-XL dataset, a 

comprehensive open-source ECG database that provides 

multi-lead ECG recordings. The data undergoes 

preprocessing, including filtering and normalization steps 

to prepare the signals for further analysis. 

In the experimental setup, three configurations of ECG 

leads are considered: single Lead II, dual leads (Lead II 

and V1), and the full 12-lead ECG, to assess the impact of 

lead selection on classification performance. The ECG 

signals are transformed into Gramian Angular Fields, 

converting the 1D time-series data into 2D image 

representations. Three different GAF sizes—5000x5000, 

512x512, and 256x256—are evaluated to determine the 

optimal image resolution for model performance, 



balancing between computational efficiency and accuracy. 

Finally, the classification performance is evaluated using 

metrics such as accuracy, precision, recall, and F1-score 

to assess the effectiveness of the different lead 

configurations and GAF sizes. The results guide the 

selection of the most suitable approach for ECG 

classification, highlighting the potential of using multi-

lead GAF transformations combined with advanced deep 

learning models for diagnosing cardiovascular conditions. 

2.1. Datasets and Preprocessing 

This study used the PTB-XL dataset, which contains 

more than 21,000 ECG records from nearly 19,000 

patients, each sampled at 500 Hz over 10 seconds. Four 

diagnostic categories were considered: Normal, atrial 

fibrillation (AFib), left ventricular hypertrophy (LVH), 

and right ventricular hypertrophy (RVH). Records were 

filtered to reduce noise, normalized using z-score scaling, 

and divided into training, validation, and test sets in an 

80:20 split. The 12-lead ECG data used in this study are 

the PTB-XL dataset, which were publicly available and 

provided by the PhysioNet [8]. PTB-XL dataset has 7528 

normal ECG records, 1514 records of AFib, 2137 records 

of LVH and 126 records of RVH. 

 

 

2.2. Gramian Angular Field 

Transformation 

The raw 1D ECG signals were transformed into 2D 

images using the Gramian Angular Field (GAF) 

technique. GAF encodes time-series data into structured 

matrices that capture temporal dependencies between 

points. This is achieved by representing the normalized 

signal in polar coordinates and applying trigonometric 

operations. Two common variants are used: the Gramian 

Angular Summation Field (GASF) and the Gramian 

Angular Difference Field (GADF). 

The GASF employs the cosine function to compute 

pairwise angular summations: 

 

𝐺𝐴𝑆𝐹 = 𝑐𝑜𝑠(𝜙𝑖 + 𝜙𝑗) (1) 

 

where 𝜙𝑖  and 𝜙𝑗  are the angles corresponding to 

normalized values of the time-series points. This 

emphasizes similarity and accumulation patterns. In 

contrast, the GADF uses the sine function to highlight 

angular differences: 

 

𝐺𝐴𝐷𝐹 = 𝑠𝑖𝑛(𝜙𝑖 − 𝜙𝑗) (2) 

 

Both variants preserve important temporal relationships 

while enabling the application of image-based deep 

learning models. In this study, we evaluated three GAF 

resolutions—5000×5000, 512×512, and 256×256—to 

investigate trade-offs between computational cost and 

classification accuracy. 

 

2.3. Evaluation Method 

Performance was quantified with accuracy, precision, 

recall, and F1-score. These metrics provided a 

comprehensive assessment of the classification results 

across experimental setups. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

 (6) 

 

 
Figure 1.  Overview of the proposed method. Generated ECG and real ECG signals are equally preprocessed, 

trained, and classified using the same ResNet model. The output of the classification model is normal, A-fib, CLBBB, 

CRBBB, LVH, and RVH. 



 

3. Results 

Table 1 summarizes classification outcomes across 

GAF image sizes and segmentation settings. ConvNeXt 

consistently outperformed ResNet, delivering higher 

accuracy and F1-scores across all experiments. The 

5000×5000 GAF resolution yielded the best raw 

performance but required extensive computational 

resources. The 256×256 resolution reduced resource 

demand but lost fine-grained detail, resulting in lower 

accuracy. The 512×512 resolution provided the most 

favorable balance, particularly when combined with 

segmentation, which enhanced detection of arrhythmias 

and hypertrophic patterns. 

 

4. Discussion 

Our findings confirm that dual-lead GAF 

transformation combined with ConvNeXt provides a 

strong alternative to conventional 12-lead ECG analysis. 

The dual-lead configuration achieved accuracy levels 

close to full 12-lead models while requiring fewer inputs, 

which is highly relevant for wearable and low-resource 

applications. This balance of efficiency and diagnostic 

capability underscores the clinical value of the approach. 

Segmentation further improved performance by 

isolating diagnostically significant segments of the ECG 

trace. By focusing learning on critical intervals, the 

models were less affected by irrelevant signal variation 

and noise, yielding better recognition of arrhythmias and 

hypertrophic conditions. These results are consistent with 

previous findings that emphasize the importance of both 

spatial and temporal localization in ECG interpretation. 

Another important observation is the impact of GAF 

resolution. Although the 5000×5000 GAF provided 

slightly higher performance, the 512×512 resolution 

offered a much better trade-off between computation and 

accuracy, making it a practical choice for real-world 

deployment. The 256×256 resolution demonstrated that 

aggressive downsampling sacrifices critical signal detail, 

which can hinder diagnostic reliability. 

Despite these encouraging results, the study has 

limitations. Only selected conditions were examined, and 

generalization to other cardiovascular diseases remains to 

be tested. The PTB-XL dataset, while comprehensive, 

may not fully capture the diversity of global populations 

or continuous monitoring scenarios. Additionally, 

transformation parameters for GAF may not be 

universally optimal, leaving room for future tuning or 

alternative encoding strategies. 

Future work should explore multimodal integration, 

combining ECG data with echocardiography, imaging, 

demographics, or genetic information to enrich model 

predictions. Investigating advanced sequence models, 

such as transformers adapted to GAF images, may further 

improve long-range temporal feature capture. Finally, 

applying the method to streaming or wearable ECG data 

could validate its utility in continuous monitoring and 

early warning systems. 

 

5. Conclusion 

This study shows that dual-lead GAF transformation 

with ConvNeXt offers an efficient yet accurate 

framework for automated ECG classification. The method 

significantly improves over single-lead models and 

approaches the performance of 12-lead systems, while 

reducing complexity and computational demands. These 

characteristics make it highly suitable for deployment in 

wearable health technologies and large-scale screening 

programs. 

Key contributions of this work include demonstrating 

the utility of GAF transformation for dual-lead ECGs, 

highlighting the advantages of ConvNeXt over 

conventional CNNs, and showing the benefits of 

segmentation in focusing on clinically relevant features. 

While the approach has limitations related to dataset 

scope, selected conditions, and reliance on static ECGs, it 

provides a solid foundation for future advancements. 

In conclusion, this framework bridges the gap between 

traditional single-lead wearable recordings and 

comprehensive 12-lead diagnostics. With further 

validation on diverse populations and continuous ECG 

data, dual-lead GAF models may play a significant role in 

enabling scalable, accessible, and reliable cardiovascular 

disease screening. This study demonstrates that dual-lead 

GAF transformation with ConvNeXt enables efficient and 

Table 1 Performance Comparison of ECG Classification Methods Using Different GAF Sizes and Segmentation 

 

Method 
F1-score 

A-fib LVH RVH Normal 

5000x5000 0.776 0.715 0.412 0.775 

512x512 0.781 0.71 0.521 0.792 

256x256 0.651 0.691 0.424 0.721 

2.5 Segmentation 0.762 0.722 0.551 0.778 

 



accurate ECG classification. The approach narrows the 

gap between single- and 12-lead performance, supporting 

practical applications in wearable devices and screening 

systems. Limitations include reliance on PTB-XL data 

and a focus on selected conditions, which may not fully 

capture real-world variability. Moreover, the analysis was 

based on static ECGs; future evaluation on continuous 

monitoring data is needed to ensure broader 

generalizability. 
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