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Abstract

This study proposes a novel approach for the denoising
of heart sound signals obtained by an implant located at
the gastric fundus site. The implant is intended for longitu-
dinal heart monitoring in the context of heart failure. This
method leverages the capability of CNN filters to differenti-
ate between noise and meaningful signals, thereby ensuring
the preservation of pertinent information. Specifically, one
of the kernels of a pretrained 1D-CNN model, originally
designed for heart failure classification, is repurposed as
a filter to denoise cardiac vibration signals. The obtained
results confirm the effectiveness of the proposed approach
in comparison to standard denoising techniques, such as
wavelet and empirical mode decomposition.

1. Introduction

Heart Failure (HF) is a clinical syndrome caused by the
heart’s inability to pump sufficient blood due to structural
or functional cardiac abnormalities [1]. HF affects over 64
million people worldwide [2]. It is expected to worsen in
the coming years with the aging population [3]. Regular re-
mote monitoring of key cardiac biomarkers could be helpful
for at-risk individuals and HF patients for early detection
or prevention of complications [4]. Heart function relies
on two interconnected mechanisms, namely the electrical
and the mechanical. Electrocardiography, commonly used
as a cardiac diagnostic tool, remains insufficient to detect
certain pathological conditions. For instance, mechanical
dysfunction, such as valvular disorders, requires PhonoCar-
dioGram (PCG) signal analysis for effective diagnosis [5].
PCG captures heart sounds during systolic contraction and
diastolic relaxation, thereby generating two key sounds.
The first heart sound (S1) is produced by the closure of the
atrioventricular valves, while the subsequent sound (S2) is
generated by the closure of the semilunar valves. Analysis
of these sounds is important to HF diagnosis [6]. Con-
ventionally, PCG is acquired noninvasively through chest-
mounted microphones. However, while PCG is effective in
short-term monitoring and diagnosis, its non-invasive acqui-

sition method imposes limitations for long-term monitoring
of HF. In this context, cardiac vibration signals, particularly
cardiac ACCeleration (ACC) signals, have emerged as a
valuable source of information for cardiac diagnosis [6, 7].

Recently, our research team contributed to the devel-
opment of a pioneering mini-invasive cardiac implantable
device in the gastric fundus [6]. Furthermore, a process-
ing pipeline for 3D ACC signals acquired by this implant
demonstrated the feasibility of long-term monitoring of
heart function and early detection of HF using such a device.
Nonetheless, despite the promising preliminary results, arti-
facts and noises related to the gastric site had a significant
impact on the efficiency of ACC signal analysis and consti-
tuted the main limitation of this study [6]. Indeed, the high
amplitudes of these noises and artifacts have the potential
to completely obscure the cardiac events of interest, S1 and
S2, thereby making their analysis very difficult. To improve
the implant’s clinical potential, developing effective ACC
signal denoising methods that can effectively enhance the
clarity of events of interest, S1 and S2, is mandatory.

A plethora of signal denoising methods have been pro-
posed in the literature. For example, wavelet-based ap-
proaches [8] and techniques that exploit Empirical Mode
Decomposition (EMD) [9] are among the most widely used.
Nevertheless, such methods still present several limitations.
For wavelet approaches, the mother wavelet, the threshold-
ing method, and the appropriate scale are parameters that
can be highly dependent on the data analyzed [8]. Simi-
larly, for EMD, the choice of decomposition level (number
of AM-FM components, termed Intrinsic Mode Functions
(IMFs)) and which IMFs to retain is not always evident [9].
In this study, an approach exploiting Deep Neural Networks
(DNNs) was proposed for the denoising of ACC signals
acquired by the implant. More precisely, the approach lever-
ages the ability of Convolutional Neural Networks (CNNs)
to effectively filter out noise using various kernels able to
capture useful information patterns about both signals of
interest and noise artifacts. The performance of the pro-
posed approach is evaluated on real data from seven pigs (4
healthy and 3 with HF) acquired via the novel implant, and
compared to results obtained using wavelets and EMD.



2. Dataset

The proposed method evaluation was conducted on ACC
signals acquired during a preclinical experiment using the
gastric implant on seven pigs (4 healthy and 3 with HF) [6].
The implant gathers ACC data along three orthogonal
axes (ACCx,ACCy,ACCz). Over a period of 14 days, 30-
second recordings were captured hourly. The first second
of each recording is skipped due to amplifier effects (see [6]
for more details). In addition, due to technical issues that
disrupted scheduled acquisitions, only 999 recordings were
retained in the final analysis. Note also that this dataset
shows unequal distribution among animals, where healthy
pigs have about 4 times more recordings than HF pigs. The
details of the number of recordings retained for each pig is
specified in Table 1. The sampling frequency is 4 kHz.

3. Methodology

CNN-based models are well-known for their ability, dur-
ing the training phase, to effectively filter noise through
various kernels capable of capturing contextual information
related to signals of interest, noise, and other artifacts [10].
Building on this, a two-step denoising method is proposed
in this paper. In the first step, a One-Dimensional CNN
(1D-CNN) model is constructed to optimize the balance
between the complexity/performance of the model in terms
of classification between healthy animals and those with
HF. In the second step, a greedy search is conducted to
select the best pre-trained kernel to be used as a denosing
filter that satisfies two well-defined criteria: i) having the
highest acceptance rate of the recorded data, and ii) maxi-
mizing the Signal-to-Noise Ratio (SNR) of the output S1
and S2 waves. The calculation of these two criteria will be
presented subsequently.

3.1. Step 1: Training 1D-CNN model

Different CNN architectures were evaluated. The one of-
fering the optimal classification/complexity compromise, in
terms of distinguishing between healthy and HF pigs, was
selected (Figure 1). The employed architecture includes
two 1D convolutional layers, comprising 16 and 32 kernels
(of size 3), respectively. Both are followed by Rectified Lin-
ear Unit (ReLU) activation and a normalization layer. Then,
an average pooling layer, a fully connected layer, a softmax
layer, and an output classification layer are used. As shown
in Table 1, the dataset is limited and unevenly distributed
among pigs (e.g., 50 records for pig 7 versus 316 for pig 4).
To address this imbalance, enhance the representation of
underrepresented classes, and ensure robust model training,
data augmentation was applied. Specifically, a 20-second
sliding window with a 1-second step shift was utilized,
where each 29-second recording generated 10 overlapping

segments, thereby increasing the dataset size tenfold. In
addition, to ensure robust, reliable, and generalizable train-
ing, a Leave-One-pig-Out (LOO) cross-validation scheme
is adopted. Specifically, the model is trained using data
from six pigs, while the recording for the remaining 7th pig
serves as an independent test set. This process was repeated
seven times, with each pig used once as a test set, resulting
in seven models. The classification performances of the
proposed 1D-CNN model, evaluated in terms of Sensitiv-
ity, Specificity, F-score, and Accuracy, are 0.9813, 0.9935,
0.9844, and 0.9893, respectively. The findings demonstrate
the efficacy of the proposed model in extracting robust and
reliable features from highly noisy ACC signals, enabling
accurate distinction between healthy and HF classes.

Figure 1: Comparative visualization shows denoising im-
pact on an ACC signal, focusing on a single cardiac cycle:
original signal (black) vs. CNN-based denoised (orange).

3.2. Step 2: Denoising kernel selection

CCNN models learn hierarchical features, with early lay-
ers detecting simple patterns and deeper layers identifying
complex ones [10]. The key idea in this study is the use
of a pretrained 1D-CNN model to select the best-suited
kernel denoising while preserving the majority of the in-
formation related to the S1 and S2 waves. To do this, a
greedy search strategy is employed on the set of pretrained
kernels of the model. More precisely, the pretrained CNN
model is applied to the entire ACC database. Then the SNR
of S1 and S2, and the number of retained data (defined in
section 4 ) are calculated at the output of each kernel. The
kernel offering the best compromise between preserving
the largest possible number of records and the best SNR is
then chosen as the optimal denoising filter, Figure 1.

4. Evaluation criteria

The performance of the proposed method was evaluated
through two criteria that aim to select only the recordings
presenting an acceptable SNR for a robust segmentation of
S1 and S2.



Criterion 1 is the acceptance rate of the recorded data. A
recording is said to be "accepted" if i) the ratio between
the maximum amplitudes of the S1 and S2 waves and the
maximum amplitude of the background noise (Figure 2)
is greater than or equal to 2 in the mean cycle of coherent
ACC cycles, ii) at least two ACC cycles have a correlation
greater than 0.6 (see [6] for more details).
Criterion 2 is the SNR improvement for S1 and S2 before
and after denoising. Let SNRθ

noisy and SNRθ
denoised represent

the SNR values of the segment θ ∈ {S1, S2} before and
after denoising. The SNR for the n-th cycle is defined as:

SNRθ
ξ,n = 10 log10

(
max

(
(zθξ,n)

⊙2
)

1
Tnoise

∑Tnoise
i=1 |uξ,n[i]|2

)
(1)

where ξ ∈ {noisy, denoised}, zθξ,n is the event θ as a vec-
tor, and Tnoise represents noise duration (Figure 2). For
each recording, SNRθ

ξ is averaged across all cycles, and the
overall dataset SNR is calculated as the average across all
accepted recordings. The SNR enhancement index ηθ is
computed as:

ηθ =
SNRθ

denoised − SNRθ
noisy

|SNRθ
noisy|

× 100 (2)
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Figure 2: Segmented S1 and S2 heart events within the
ACC heart cycle, with a noise/baseline segment in red.

5. Results

This section presents the evaluation an evaluation of the
performance of the proposed method in terms of data accep-
tance rate and SNR improvement for heart sounds S1 and
S2 (Criteria 1 and 2). A comparative analysis is performed
with two conventional denoising techniques that are widely
used in the literature: Wavelet and EMD-based methods.
For a fair comparison, the parameters of the conventional
methods were tuned to achieve the best trade-off between
the two evaluation criteria. The wavelet-based approach
used a biorthogonal wavelet with five decomposition levels,
combined with Stein’s Unbiased Risk Estimate (SURE)
thresholding [11] and a soft thresholding strategy. For the
EMD method, eight intrinsic IMFs were initially extracted,
and the denoised signals were reconstructed using the sum
of selected IMFs (three out of the eight in our case) that

yielded the best performance. The visual inspection of
each denoising method is presented in Figure 3. The fig-
ure presents an example of denoising applied to a set of
cardiac cycles extracted from a 29-second ACC recording
along the Y-axis (ACCy). To display the full recording, the
cardiac cycles were segmented, aligned, and stacked. The
proposed method clearly provides superior enhancement of
the S1 and S2 heart sounds, although the wavelet-based re-
sult also appears satisfactory. Furthermore, the CNN-based
approach achieves greater suppression of background noise
between S1 and S2, enabling more accurate segmentation
of the key cardiac events.
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Figure 3: Example of denoising a set of ACC heart cycles
extracted from a 29-second Y-axis accelerometer recording.

5.1. Impact of denoising on acceptance rate

Table 1 summarizes the data acceptance rates (Criterion
1) before and after denoising. Before denoising (Org), the
acceptance rate is 85.98%. The EMD and wavelet-based
methods do not improve this rate, yielding 84.78% and
81.98%, respectively. In contrast, the CNN-based denoising
method achieves a significantly higher acceptance rate of
90.69%. This improvement is mainly due to the CNN’s
stronger suppression of background noise, as shown in
Figure 3, unlike EMD and wavelet methods, which are less
effective in reducing background noise between S1 and S2.

5.2. Impact of denoising on SNR

Table 2 shows the mean and standard deviation of SNR
values (Criterion 2) for S1 and S2 events across the three
ACC axes, before and after denoising. The proposed de-
noising strategy significantly outperforms the two classical
methods (wavelets and EMD), as indicated by the higher
average SNR values and improvement rates for S1 and S2
on all axes. For instance, on the Y-axis without denoising,



the mean SNRs for S1 and S2 are 15.4 dB and 11.4 dB,
respectively. After CNN-based denoising, SNRs increase
to 18.8 dB (21.6% improvement) for S1 and 13.2 dB (16%
improvement) for S2. Conversely, wavelet and EMD meth-
ods yield only modest improvements, with rates ranging
from 1.2% to 4.6%.

Table 1: Distribution of accepted records per pig with and
without denoising.

Class Pig ID Total records Accepted records by method
Org EMD Wavelet CNN

Healthy

1 95 81 81 81 87
2 163 132 135 135 144
3 232 189 191 188 217
4 316 288 280 283 311

HF
5 70 57 52 47 46
6 73 66 64 56 53
7 50 46 44 35 48

Total All 999 859 847 819 906
Accept (%) – – 85.98 84.78 81.98 90.69

Table 2: Mean ± standard deviation of SNR and improve-
ment ratio (η) for ACC axes.

Method ACC S1 ACC S2

X Y Z X Y Z
No

denoising 15.2 ± 5.9 15.4 ± 5.6 15.6 ± 5.9 10.8 ± 5.7 11.4 ± 6.1 11.2 ± 5.8

EMD 15.4 ± 5.4 15.7 ± 5.5 16.0 ± 5.6 11.1 ± 5.8 11.7 ± 5.8 11.6 ± 5.7
η (%) +1.2 +2.0 +3.0 +3.0 +2.6 +3.2
Wavelet 15.6 ± 5.6 15.8 ± 5.8 15.9 ± 5.8 11.3 ± 5.9 11.8 ± 6.1 11.5 ± 6.0
η (%) +2.5 +2.9 +2.0 +4.6 +3.5 +2.9
CNN 17.7 ± 8.0 18.8 ± 8.5 17.4 ± 7.6 12.3 ± 8.1 13.2 ± 9.1 12.2 ± 7.6
η (%) +17.1 +21.6 +11.3 +13.5 +16.0 +8.7

6. Conclusion

A novel approach leverages CNN models initially trained
for classification to address denoising challenges in the long-
term monitoring of chronic heart diseases. This method
involves the selection of the most effective kernel from a
low-cost, pretrained CNN, based on its ability to achieve
the best trade-off between recording acceptance rate and
SNR improvement. The selected kernel is then repurposed
for denoising ACC signals acquired by an innovative, min-
imally invasive implantable device placed at the gastric
fundus. The experimental results demonstrate that the pro-
posed CNN-based denoising method significantly enhances
the SNR of the two key heart sounds, S1 and S2. From a
clinical perspective, this improvement has two main ben-
efits. First, it enables more reliable use of the implanted
device by reducing the percentage of unusable recordings.
Second, it allows for more precise segmentation of S1 and
S2, which is imperative for improving the diagnosis and
monitoring of cardiac pathologies.
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