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Abstract

A compact, interpretable feature-extraction pipeline
for ECG-based detection of Chagasic cardiomyopathy
(CCM) is presented. A principal component beat is
constructed from multi-lead ECG through robust align-
ment and SVD, and it is analyzed with a continu-
ous wavelet transform (CWT) based on a Daubechies-
6 wavelet treated as continuous. From the result-
ing scale-wise energy distribution, two biomarkers are
derived: normalized Shannon entropy H and wavelet
statistical complexity C. A Random Forest classifier
is trained on (H, C). The implementation, developed
for the GeorgeB.MoodyPhysioNetChallenge, is
equipped with robust fallbacks to guarantee feature ex-
traction for every record. Significant differences between
CCM and non-CCM groups are observed, and competitive
leaderboard performance is achieved, highlighting the po-
tential of interpretable biomarkers.

1. Introduction

Chagas disease, caused by Trypanosoma cruzi, affects
millions in Latin America and continues to be a major
cause of sudden cardiac death. The early detection of CCM
is regarded as crucial. The use of black-box deep models
has been associated with high computational cost and large
data requirements, which limit their clinical translation.

As an alternative, a biophysically meaningful and low-
dimensional representation is proposed, based on wavelet-
derived entropy and complexity. Two biomarkers are de-
fined: the entropy H, obtained from normalized Shannon
entropy, and the complexity C, obtained from wavelet sta-
tistical complexity. From a biological perspective, H quan-
tifies the degree of disorder in the distribution of wavelet
energy across scales, which can be related to the hetero-
geneity of cardiac electrical activity. Conversely, C mea-
sures the balance between order and disorder, thus captur-

ing structured deviations from uniformity that reflect the
presence of organized but altered conduction patterns in
the myocardium. Both biomarkers are extracted from a
principal component beat, which is robustly derived from
multi-lead ECG.

2. Methods

2.1. Datasets and preprocessing

The George B. Moody PhysioNet Challenge datasets of
12-lead ECGs was used. Records labeled as CCM cor-
respond to patients with a reported diagnosis of Chagasic
cardiomyopathy, while those labeled as Non-CCM corre-
spond to individuals without such a diagnosis, including
both healthy subjects and patients with other cardiovascu-
lar conditions.

The Challenge data are derived from three main sources:
• CODE-15% dataset: a large Brazilian cohort from
which approximately 15% of the CODE study records
were released, including demographic information and
specific Chagas labels.
• SaMi-Trop dataset: a cohort study of patients with
confirmed Chagas disease from endemic regions in Brazil,
with ECGs and associated demographic data.
• PTB-XL dataset: a large German dataset of clinical 12-
lead ECGs, which includes a wide range of cardiac and
non-cardiac pathologies.

Signals from these datasets were converted to WFDB
format by the Challenge organizers, including available
demographics and Chagas labels. All signals were sub-
sequently resampled to 1000 Hz. In particular, filters
from NeuroKit2, a Python toolbox for neurophysiolog-
ical signal processing, were applied to each lead, by which
bandpass filtering, baseline wander suppression, and adap-
tive notch filtering at the specified powerline frequency
were performed, resulting in artifact-reduced ECG traces
suitable for delineation. Baseline wander was further cor-



rected through cubic spline interpolation.

2.2. QRS segmentation and alignment

R-peaks were first detected in each beat of each lead of
the ECG from each patient. For each lead, 256 ms win-
dows (35 % pre-R, 65 % post-R) were then extracted. In
cases where R-peaks were missing, overlapping or tiled
windows were employed as a fallback. Beat alignment was
performed by cross-correlation and by the Woody algo-
rithm against a median reference. The Woody algorithm,
widely used in biomedical signal processing, iteratively
aligns signals by estimating relative delays and averaging
them, thus improving robustness in the presence of noise
or jitter. Beats with normalized correlation < 0.85 were
discarded. When alignment failed, the median or a deter-
ministic central segment was substituted.

2.3. Principal Component Beat

Valid per-lead beats were stacked, centered, and reduced
via singular value decomposition (SVD). The first right
singular vector defined the temporal pattern, anchored us-
ing the highest-energy lead. This produced a robust prin-
cipal component beat.

2.4. Wavelet energy distribution

For each principal component s(t), with t denoting time,
the CWT was applied using the Daubechies wavelet of or-
der 6 (ψj,k = db6) as the mother wavelet. The wavelet
coefficients cj,k(t) were obtained as the inner product be-
tween the signal and the scaled and shifted wavelet:

cj,k(t) =
1√
j

∫ ∞

−∞
s(t)ψ∗

(
t− k

j

)
dt, j = 1, . . . , 16.

The relationship between the wavelet scale j and the
equivalent frequency fj in Hz for the continuous wavelet
transform is given by

fj =
fc
j∆t

,

where fc is the center frequency of the mother wavelet se-
lected and ∆t is the sampling interval in seconds.

In particular, when the db6 wavelet is used with scales
j = 1, . . . , J = 16, the resulting frequency coverage ex-
tends approximately from 31.28 Hz up to the Nyquist fre-
quency. The following figure illustrates the scalogram ob-
tained from the Continuous Wavelet Transform (CWT) of
s(t):

Then, the energy at each scale was computed as

Ej =

K∑
k=1

|cj,k|2, j = 1, . . . , J.
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Figure 1. Scalogram of the signal s(t) obtained using the CWT with
the db6 mother wavelet and scales j = 1, . . . , 16.

From these values, a normalized probability distribution
across scales was defined:

ρj =
Ej∑J
j=1Ej

, j = 1, . . . , J.

By construction, the vector p = (p1, . . . , pJ) belongs to
the probability simplex

P =
{
ρ ∈ RJ | ρj ≥ 0,

J∑
j=1

ρj = 1
}
.

2.5. Shannon Entropy and Statistical Wavelet
Complexity biomarkers

The normalized Shannon entropy is defined as

H[P ] =
−
∑J

j=1 ρj ln ρj

ln J

The normalized Statistical Wavelet Complexity is de-
fined as

C[P ] = Q0H[P ] JS(p,pe)

where JS(p,pe) denotes the Jensen Shannon divergence
between the distribution p and the uniform distribution pe;
and Q0 is a closed-form normalization factor ensuring that
C ∈ [0, 1], given by

Q0 = − 2(
J + 1

J

)
ln(J + 1) − 2 ln(2J) + ln(J)

.

2.6. Training and inference pipeline

The routine was designed as a compact, fail-safe
pipeline centered on two interpretable features: normal-
ized Shannon entropy H and statistical wavelet complexity
C.

For training, the Challenge records were discovered
from the provided data directory and were processed in-
dependently. Multilead ECG signals were loaded to-
gether with metadata (in particular, the sampling fre-
quency). Features were then extracted, yielding the



two-dimensional vector (H[P ], C[P ]) computed from a
principal-component beat derived from the multilead in-
put. Ground-truth labels were obtained via the Challenge
helpers and were stored as boolean targets. After extrac-
tion, the design matrix had shape N × 2, and training was
conducted only if both classes were represented so as to
avoid degenerate classifiers.

A Random Forest classifier was then fitted to the
features. A small number of trees and a bounded
number of leaf nodes were selected (nestimators =
12, max_leaf_nodes = 34, random_state = 56) to pro-
mote fast and stable training with controlled variance. A
reload was performed immediately to validate that the ar-
tifact could be reopened in the same environment.

At inference, the saved dictionary was loaded and the es-
timator was retrieved. A binary decision was returned via
predict and a positive-class probability via predict_proba.
If no model was available, a conservative default (0, 0.0)
was produced to prevent downstream failures. If features
could not be computed for a given record, None values
were returned to signal the failure explicitly.

A deterministic rescue path was implemented to ensure
per-record feature availability, activated whenever the pri-
mary extractor failed or yielded non-finite outputs. The
lead with the largest variance was selected, and a cen-
tral window of approximately 0.256 s at 1000 Hz was ob-
tained. A continuous-style wavelet analysis was then per-
formed using a Daubechies-6 wavelet with J = 16 scales,
and coefficients were normalized with a 1/

√
scale gain.

Per-scale energies were summed over time, and a proba-
bility mass function over scales was formed. The entropy
H[P ] was computed as the Shannon entropy of this dis-
tribution, normalized by ln J . The complexity C[P ] was
obtained by modulating H[P ] with the Jensen–Shannon
divergence between the empirical distribution and the uni-
form distribution over scales.

Overall, the system was conceived to be robust by de-
sign: signals were sanitized at load time, features were
strictly validated, a principled fallback reproduced the in-
tended wavelet-based measurements from raw data, and
model input/output was kept minimal and reproducible.
This combination ensured that every record could be pro-
cessed end-to-end while preserving the interpretability
provided by (H[P ], C[P ]).

3. Results

Compared with the CCM group, the Non-CCM co-
hort exhibited, on average, higher entropy (H) and lower
complexity (C). This combination is consistent with a
broader dispersion of wavelet energy across scales and
with weaker, less organized departures from uniformity,
i.e., reduced structural organization in QRS morphology.
In practical terms, larger H reflects greater variability in

the scale-wise energy distribution, whereas smallerC indi-
cates diminished patterned structure that would otherwise
arise from organized conduction abnormalities.

On the public validation leaderboard for the of-
ficial phase of the 2025 George B. Moody Phys-
ioNet/Computing in Cardiology Challenge, our team
CompleXformers achieved a score of 0.187.

Fig. 2 shows the feature distribution across groups:

CCM group
Non-CCM group

Figure 2. Distribution of entropy H and complexity C
between CCM and Non-CCM groups.

4. Discussion

The proposed biomarkers are interpretable: H reflects
the spread of wavelet energy, C captures structured devi-
ations from uniformity. This method is computationally
light, robust to missing data, and does not rely on deep
networks.

4.1. Limitations and Future Work

The current approach captures only QRS-based scale
distributions. Possible extensions include T-wave descrip-
tors, rhythm statistics, and learned wavelets. In addition,
analysis of QRS complexes in low-frequency bands may
be incorporated, capturing wavelet scales complementary
to those already considered, with the aim of revealing
slower conduction components and morphological mod-
ulations that are not visible at the previously analyzed
scales. Integrating multi-beat or temporal features may
further improve detection.

5. Conclusions

We implemented and validated a wavelet-based en-
tropy/complexity pipeline for Chagas detection. Despite



using only two features, (H,C) achieved group separabil-
ity and a competitive Challenge score. This demonstrates
the promise of interpretable biomarkers for deployment in
low-resource environments.
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