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Abstract

This work proposes a method that combines machine
learning and signal processing techniques to detect and
classify cardiac arrhythmias in ECG signals, using the
MIT-BIH Arrhythmia dataset. The methodology consists
of the following steps: preprocessing to eliminate atypi-
cal morphologies in MLII derivation or accelerated heart
rhythm, segmentation of the R-Peak annotations, and ar-
rhythmias classification using 1D CNN (10 different types
of arrhythmias were classified). The model achieved the
following performance: accuracy and precision - 99.40%,
recall - 99.32%. For explaining the results, the Grad-CAM
technique was used for interpretability, identifying rele-
vant ECG regions in the decisions. The results prove the
effectiveness of the method in the automatic detection of
arrhythmias.

Keywords — machine learning, arrhythmias, 1D CNN,
R-Peak, Grad-Cam.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause
of death worldwide, accounting for 17.9 million deaths in
2019, and for 32% of global deaths. Most cases occur in
low- and middle-income countries, and 85% of deaths are
related to heart attacks and strokes. Many of these deaths
can be prevented by reducing risk factors such as smoking,
unhealthy diet, and physical inactivity. Early detection and
appropriate treatment are essential to reduce CVD mortal-
ity [[1].

Rajpurkar et al. [2]] report that manual analysis of these
signals is complex and error-prone, especially in continu-
ous monitoring. Automated arrhythmia detection systems
have emerged as a promising approach to improve diag-
nostic accuracy and reduce response time.

Acharya et al. [3]] developed a 9-layer deep convolutional
neural network (CNN) to automatically classify five cate-
gories of cardiac segments from 260 samples in ECG sig-
nals. The model was trained on raw data processed to re-

move noise, as well as an artificially augmented set to bal-
ance the classes. In the testing, CNN achieved an accuracy
of 94.03% on raw ECGs and 93.47% on noise-free signals,
while with unbalanced data, the accuracy dropped to ap-
proximately 89%. These results demonstrate the potential
of CNN as an auxiliary tool in the detection of automatic
arrhythmias.

Zhou et al. [4]] proposed a hybrid method that combines
convolutional neural networks (CNN) with extreme learn-
ing machines (ELM) for the automatic classification of
four classes of arrhythmias in ECG signals. The approach
aims to mitigate the challenges caused by noise and poor
signal quality, improving accuracy in the diagnosis of ar-
rhythmias. The methodology includes segmenting the sig-
nal around the R peak of the QRS wave with 250 samples,
ensuring a more accurate analysis of the heartbeat. The
experiments demonstrated that the model achieved an ac-
curacy rate of 98.77%, which demonstrates high general-
izability for different data sets.

Ahmed et al. [5] proposed a deep learning architecture
based on one-dimensional convolutional neural networks
(1D-CNN) for the automatic classification of four types
of cardiac arrhythmias. The model was trained with real
signals from the MIT-BIH database, previously processed
for noise reduction. The methodology involved the extrac-
tion of beats from ECG lead II, using normalization and
segmentation techniques in 180-sample windows based on
R-peak detection. The results showed satisfactory perfor-
mance, with 100% accuracy in training and 99.0% in test-
ing, standing out as an efficient alternative for the auto-
mated diagnosis of arrhythmias.

This study presents a robust model for automatic classifi-
cation of heartbeat-associated arrhythmias, focusing on the
analysis of P, QRS, and T waves. It combines signal pre-
processing, R-peak-based segmentation, and a deep 1D-
CNN architecture. The method adapts the segmentation to
specific morphologies of arrhythmias, increasing the sen-
sitivity to the associated arrhythmia, thus providing a pos-
sible scalable clinical solution.



2. Methodology

2.1. Database Processing

The MIT-BIH Arrhythmia Dataset [6] was used. This
dataset contains 48 ECG recordings (30 minutes each,
sample rate of 360 Hz) from 47 patients, with manual an-
notations of arrhythmias by specialists. This dataset was
chosen for its reliability, diversity and recognition as a
benchmark in signal processing and machine learning. In
the preprocessing phase, illustrated in Figure 1, we identi-
fied, for each record, the leads present in the MIT-BIH Ar-
rhythmia dataset, selecting exclusively records with MLII,
the gold standard for arrhythmia analysis. The last block
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Figure 1. Steps of data preprocessing

in Figure 1, aims to eliminate records with atypical mor-
phologies or accelerated cardiac rhythms. Atypical mor-
phologies were observed in classes NB, LBBB, RBBB
and PAC, even within the same derivation(MLII). Another
atypical condition identified was the presence of short RR
intervals and multiform PVCs. Figure 2 illustrates these
problems in records 111, 108, 124, and especially in 207,
which has the highest number of atypical conditions be-
tween LBBB, RBBB, PAC and PVC classes. Figure 2(a)
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Figure 2. Classes with atypical morphologies (a) LBBB,
(b) NB, (c) RBBB and (d) PAC and PVC. In Figure (d)
the multiple PVC morphologies and short RR intervals are
evidenced in record 207.

presents a standard LBBB class(MLII, record 109) and
atypical morphology (records 207 and 111). Figure 2(b)
shows a standard NB class(MLII, record 100) with atyp-
ical morphology (record 108), while Figure 2(c) shows

a standard RBBB class (MLII, record 118) and atypical
morphology (record 124). Figure 2(d) presents a standard
PAC class(MLII, record 232) with atypical morphology in
record 207, which also presents short RRs and multiple
PVC morphologies.

2.2, Segmentation and Normalization

The use of preexisting annotations from the MIT-BIH
arrhythmia dataset, which provide the exact positions of
the R peaks, significantly simplifying the segmentation
process. According to Malmivuo [[7], the complete dura-
tion of cardiac events lasts 600 ms. Based on Malmivuo
description, the ECG signals were divided into 600 ms seg-
ments (216 samples corresponding to a sampling rate of
360 Hz), centered on the R peaks, with asymmetric win-
dows of 212.5 ms (76.5 samples) before the R peak and
387.5 ms (139.5 samples) after the R peak, ensuring the
capture of the morphological characteristics of the P, QRS
and T waves. As illustrated in Figure 3, this approach en-
sures the faithful representation of the rhythmic and mor-
phological behavior of the signal, while maintaining the
temporal and physiological consistency required for ar-
rhythmia analysis.
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Figure 3. Unnormalized Generated Segment

As demonstrated by [8]], data normalization is essential in
pattern recognition, whether supervised or not supervised
learning is employed. This work used minmax normaliza-
tion to reduce amplitude variations, preserving morpholog-
ical characteristics, as illustrated in the process in Figure
4. The data set was partitioned into training subsets (70%),
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Figure 4. Data Normalization

validation subsets (15%), and test subsets (15%) while pre-
serving the original proportion of arrhythmia classes to
prevent bias and ensure the generalizability of the model.
The detected arrhythmias, a as illustrated in Figure 5, in-
clude Normal Beat (NB, N), Premature Atrial Contraction
(PAC, A), Fusion of Ventricular and Normal Beat (FVNB,



F), Fusion of Paced and Normal Beat (FPNB, f), Left Bun-
dle Branch Block (LBBB, L), Right Bundle Branch Block
(RBBB, R), Premature Ventricular Contraction (PVC, V),
Paced Beat (PB, /), Aberrated Atrial Premature (AAP, a),
and Nodal Escape Beat (NEB, j).
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Figure 5. Generated Segments

2.3. Neural Network Architecture: Train-
ing and Testing

The proposed neural network, illustrated in Figure
6, employs a sequential architecture with three one-
dimensional convolutional blocks (96, 128, and 256 filters,
kernel=10, stride=1, padding="same’) interleaved with
batch normalization and ReLU, followed by max pooling
(window=5); L, regularization is applied in the last three
convolutional layers. A flatten layer is used for vectoriza-
tion, followed by two dense layers (128/96 neurons, ReLU
+ L), and a final softmax layer for multiclass classifica-
tion. The model was trained using the Adam optimizer
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Figure 6. Proposed Architecture

(initial learning rate = le-3) with the categorical cross-
entropy loss function, monitoring the precision, recall and
accuracy metrics for multiclass evaluation. Three essential
callbacks were implemented: Early Stopping (patience =
20 epochs) to prevent overfitting. Learning Rate Scheduler
for dynamic adjustment of the learning rate. Model Check-
point to save the best model based on the validation loss.
The training employed batches of 512 samples (with shuf-
fle), class weights for balancing, and lasted a maximum of
100 epochs, using an independent validation set to ensure
model generalization.

3. Results and Discussion

Table 1 shows the results obtained for the classification
of 10 classes. The following metrics were obtained: ac-
curacy, recall,and precision. The confusion matrix, shown
in Table 2, evaluates the performance of the model when
comparing the true labels with the predictions made. The
principal diagonal values represent the correct predictions
for each class, while the secondary diagonal values indi-
cate misclassification.

Table 1. Comparison of results with works using R-peak-
based segmentation and CNN-1D

Reference Method Acc.(%) Recall (%) Prec. (%)
Proposed Model ID CNN, 10 classes 99.40 99.32 99.40
and 216 samples
1D CNN, 5 classes
Acharya et al. 3] and 260 samples 94.03 96.71
1D CNN + ELM, 4 classes
Zhou et al. [4 and 250 samples 98.77
Ahmed et. al [5 1D CNN, 4 classes 99.00 94.00

and 180 samples

Table 2. Confusion Matrix with Absolute Values

True Label Predicted Label
N A F f L R \% / a
N 10671 17 3 0 0 0 7 0 0 2
A 25 335 0 0 0 1 0 0 0o 0
F 9 0 98 0 0 0 13 0 0 0
f 0 0 0 39 0 0 0 0 0o 0
L 2 0 0O 0 673 0 0 0 0o 0
R 0 1 0 0 0 847 0 0 0o 0
\Y% 17 0 5 0 0 0 88 0 0o 0
/ 0 0 0 0 0 0 0 543 0 O
a 4 0 0 0 0 2 1 0 18 0
j 10 1 0 0 0 0 0 0 0 24

3.1. Grad-Cam Explanation

Gradient-weighted Class Activation Mapping (Grad-
CAM) was used to explain model decisions by highlight-
ing signal regions relevant to arrhythmia classification. Us-
ing gradients from the last CNN layer [9], it enables eval-
uation of the clinical relevance of detected patterns. Fig-
ure 7 presents Grad-CAM results for LBBB and NEB. In
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Figure 7. Grad-Cam for LBBB and NEB

LBBB, activation focuses on the wide QRS and altered
ST-T interval, confirming effective model learning. For
NEB, attention appears in the irregular QRS and short or



absent PR interval, aiding distinction from other arrhyth-
mias. Figure 8 shows the Grad-CAM results for NB, PAC,
RBBB, and PVC. In normal beats, activation is centered in
the QRS, with balanced attention in ST and T waves, con-
firming sinus rhythm recognition. In PAC, focus is on the
premature P wave, its key marker. RBBB shows activa-
tion in the widened QRS and altered repolarization. PVC
displays strong activation in the premature, widened QRS
and asymmetric repolarization, confirming correct classi-
fication. Figure 9 presents the Grad-CAM analysis for
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Figure 8. Grad-Cam for NB, PAC, RBBB, and PVC

FNVB, FPNB, PB, and AAP. For FNVB, activation ap-
pears in QRS regions distinct from each isolated beat, em-
phasizing transition zones and confirming correct pattern
recognition. For FPNB, intense coloring highlights pre-
QRS and post-QRS regions, indicating the model’s strong
performance. In PB, activation focuses on the stimulation
spike, widened QRS, and repolarization changes, confirm-
ing artificial pacing. In APP, the predominant attention
is on the premature P wave and the wide QRS complex,
demonstrating the good generalization of the model.
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Figure 9. Grad-Cam for FNVB, FPNB, PB, AAB

4. Conclusion

The proposed method exceeded the state of the art, with
an accuracy of 99.40% in the detection of arrhythmias. The

analysis using Grad-Cam has effectively demonstrated the
model capacity to accurately focus on the heartbeat regions
that have relevant standards associated with each class
anomalies. The results indicate that the model was able to
properly generalize the patterns related to the main charac-
teristics of a heartbeat (P complex, QRS and T wave), both
in the identification of normal beats and other arrhythmias.
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