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Abstract

Ventricular tachycardia (VT) is a leading cause of sud-
den cardiac death, and effective treatment often relies on
catheter ablation guided by pace-mapping. Traditional
pace-mapping is a labor-intensive process requiring ex-
pert interpretation of ECGs. Recent methods using Gaus-
sian process (GP)-based Bayesian optimization (BO) have
improved efficiency by reducing the number of stimula-
tion sites needed for localization, but they fail to trans-
fer knowledge across different VT targets, requiring re-
training for each new case. This study introduces a novel
BO framework that integrates ensemble neural networks
(ENN) with continual learning (CL) strategies to enable
knowledge transfer across tasks. Allowing increased effi-
ciency without the need for initial data and memory across
tasks. Evaluated on one healthy and one infarcted setting
of a heart geometry, our proposed method demonstrated
an average 90% reduction in required pace-mapping sites
compared to unguided approaches and a 65% reduction
relative to GP-based BO.

1. Introduction

Ventricular tachycardia (VT) is a life-threatening car-
diac arrhythmia and a major cause of sudden cardiac death
[1,2]. A common and effective treatment for VT is catheter
ablation, wherein accurate localization of the abnormal
heart activity is critical. This localization is often achieved
through pace-mapping, a process that involves stimulat-
ing various sites on the heart and comparing the resulting
ECG signals to those recorded during clinical VT episodes
[3]. Traditional pace-mapping methods rely heavily on ex-
pert interpretation and involve a time-consuming trial-and-
error approach to identify the optimal ablation site.

To improve this process, recent strategies have em-
ployed deep learning and other machine learning tech-
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niques [4-6] designed to predict the origin of VT sig-
nals. The first class of these methods use population-based
learning, in which models are constructed using large and
diverse datasets of patient ECGs, which are then applied
to new patients. However, this requires acquiring a robust
dataset that properly captures the distribution of heart ge-
ometries and ECG responses, which is difficult, and new
patients whose heart geometries lie outside of the training
distribution may see poor performance from these models.

The second class of methods uses patient-specific learn-
ing, where Bayesian Optimization (BO) frameworks guide
the selection of stimulation sites more efficiently. Patient
specific models, such as the Gaussian Process (GP) [7],
can capture the relationship between the pacing site loca-
tion and target ECG, while also providing a measure of
uncertainty in the relationship. The uncertainty estimate is
a crucial component of the BO process and allows the al-
gorithm to explore and exploit the search space effectively.

However, there is a key limitation of this method; the GP
models the relationship between a pacing-site location and
the similarity between that paced ECG and the target ECG.



Therefore, the model cannot transfer information between
tasks (as the target ECGs would be different), and must be
retrained from scratch for each new target, even within the
same patient heart, limiting scalability and clinical utility.

In this work, we present an improvement on existing
strategies by incorporating neural networks trained to pre-
dict full 12-lead ECG responses at each stimulation site.
This allows the model to utilize signal-level information
rather than relying solely on spatial coordinates. Further-
more, we introduce a continual learning (CL) framework
that enables the model to transfer knowledge across se-
quential tasks without requiring direct transfer of ECG
data. This continual learning approach allows the model
to selectively incorporate relevant prior knowledge, signif-
icantly improving efficiency across multiple tasks.

We evaluate our proposed method using simulated ECG
data generated via a realistic biophysical modeling frame-
work. Performance is assessed using several key met-
rics, including the number of pace-mapping sites required
for localization, localization error, and convergence rate.
We benchmark our approach against a state-of-the-art
GP-based BO method, analyzing performance within one
healthy and one infarcted setting of a heart geometry. Our
results demonstrate the effectiveness and generalizability
of our approach, highlighting its potential for improving
pace-mapping efficiency and clinical applicability.

2. Methods

In this section we define the main components of our
study: our base surrogate model, the BO algorithm includ-
ing the acquisition function, similarity scoring, and con-
vergence criteria, and the continual learning algorithm.

2.1. Base Surrogate Learner

The base surrogate learner is an ensemble of neural net-
works (ENN), consisting of three independently trained
neural networks (MLPs). The models are architecturally
identical, using three layers of size 128 followed by ReLU
activations, and is optimized using the Adam optimizer.
Each neural network models the relationship between pac-
ing site location X; = [g;,r;,s;] and response Y; =
[Yi1s Yins ---s Ui, | for the ith site-ECG pair with ¢ represent-
ing the length of the ECG signal.

Given the ENN (IV), each MLP (n € N), and a coordi-
nate X;,

1 3
=3 n(X) (1)
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2.2. Bayesian Optimization

2.2.1. Correlation Coefficient and Uncer-
tainty

The acquisition function in BO requires that we gener-
ate an objective criteria, including () and o(x), to opti-
mize for subsequent suggestions. We use a metric called
the correlation coefficient (CC). After obtaining the pre-
diction and uncertainty for the ECG at a given pacing site,
we can compute the similarity and uncertainty of similar-
ity between the predicted ECG and the target ECG. They
are computed as follows,

1(X5) = CC(Y;, N(X;))
CCupper = CC(Y;, N(Xi) + Nsta(X5)) 3)
CClower = CO(Yi, N(X;) + Nata(X5))

o(X;) = CCupper = CClower

2.2.2. Acquisition Function

With the u(x) and o(x) functions defined in Section
2.2.1, we can use the Expected Improvement (EI) acqui-
sition function to balance exploration and exploitation in
selecting the next stimulation site.

BI) = (u) - £ H257 ) +
o(x)<z>(“<;‘2;)f*>, @)

where, f* is the best observed CC so far, and ® and ¢
are the CDF and PDF of the standard normal distribution,
respectively.

The function is then evaluated at each pacing site in our
ECG database (excluding previously paced sites) and the
location with the highest expected improvement is chosen
as the next stimulation site to sample.

2.2.3. Convergence Criteria

The optimization process terminates when a response
ECG with at least 97% CC to the target ECG is identi-
fied, this means that on average the paced site is within a
distance of 5mm from the target; a threshold deemed suf-
ficient for clinical localization accuracy,

2.3. Continual Learning

We propose a novel Grown Weighted Ensemble of Base
Learners (GWEBL) framework that mitigates this issue
by dynamically assembling an ensemble of base learn-
ers (ENNs) for each task. The method balances plastic-
ity and stability by using a learned weighting module, or



“weighter”, that selects and combines experts based on
both recent task performance and historical utility.

2.3.1. Weighting the Ensemble

A separate neural network is used to weight both the
current and prior learners based on their performance in
the current task. The weighter is implemented using a bot-
tleneck architecture consisting of three layers of size 64
followed by one of size 32, then 16. Each layer is followed
by ReLU activations, except for the last which uses Soft-
Max to turn the outputs into normalized probabilities.

The weighter also starts with a significantly disruptive
dropout rate of p = 0.5 at the final weighting step, forc-
ing it to consider many models as possible sources of prior
information. As the task progresses the dropout rate de-
creases by 0.05 each round, allowing the model to give
more weight to the best performing model.

The prediction and uncertainty of the GWEBL (G) at
any given time is the weighted (I¥') average of each base
learner (B), in the GWEBL ensemble (F).

G(z) =Y W(x); - Bj(x) ©)

Using the dataset of the current task only, backpropaga-
tion is done to update the parameters of the weighter W
and the newest base learner B |E|» all other B € FE remain
unchanged.

2.3.2. Growing and Pruning the Ensemble

When a new task is started, an additional learner is ap-
pended to F with its parameters randomly initialized, and
its weight W g, is 0.

If the new task begins and the size of E is equal to 10,
then there will be a pruning stage to remove one of B in
favor of a newly initialized B. To do this, we keep a record
of the ensemble weights at the convergent round for each
task. Then the historical weight of B; is the average W
over all previous tasks, and the B; with the lowest histori-
cal weight (where j < 7) is removed from F.

h
W) |Wh| Z (W) ®
W]h is the weight history of B;

We put this restriction on j to allows newer models to
proliferate in a number of tasks before they can be decided
to be of low weight.

2.3.3. Integration with BO

For the first task in BO, there will only be one B so we
initialize the first task using 2 randomly selected pacing-
site locations. For each subsequent task, the first round of
acquisition will use W of the ultimate round in the previ-
ous task (after the ensemble has been pruned, if applica-
ble). The full algorithm is shown,

Algorithm 1 GWEBL in BO

Require: Dataset (X,Y), ensemble FE, weighter W,
weight history ", base learner B.
for t in tasks do
E,Wh W « GrowPrune(W;, E, B)
repeat
for e in epochs do
Ow <+ 0w — Vp,, Loss(X,Y)
9B‘E‘ — HB‘E‘ — VgBlE‘LOSS(_X7 Y) . VV‘E|
end for
(Xnew, Ynew) < Acquisition(W, E)
until CC(yarget; Ynew) > 0.97

end for
3. Experiment
3.1. Data

We consider a single human biventricular model ob-
tained from the Experimental Data and Geometric Anal-
ysis Repository (EDGAR) [8]. The model includes a
healthy (sinus) condition and an infarcted condition. For
each condition, 12-lead ECGs were calculated for 924 pac-
ing sites under healthy conditions and 687 pacing sites un-
der infarcted condition. ECG signals are processes such
that each lead signal is of length 170.

3.2. Baselines

We compare our results against three baselines namely:
Random, GP-based Bayesian Optimization (GP), and
ENN-based Bayesian Optimization (ENN), i.e the base
learner used in our continual-learning method. In the Ran-
dom, candidate pacing sites are randomly selected from the
coordinate search space without considering model uncer-
tainty. In contrast, the GP leverages the uncertainty of a
task-specific surrogate model, modeled for individual tar-
get ECG for each patient, to guide the selection of the next
candidate site. The ENN baseline works similarly to GP
but predicts the entire ECG signal rather than just the CC.
Importantly, none of these baselines incorporates knowl-
edge transfer, as a new surrogate model is created inde-
pendently for each task.



Sinus Condition

Methods Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Random 53.9 +/-38.0 23.6+-21.0 85.3 +/-27.7 75.7 +I-32.6 69.3 +/-36.8 76.5 +/-34.9
GP 16.7 +/-6.0 9.6 +-4.6 14.6 +/-6.1 16.5+/-7.2 16.2 +/-6.8 11.2+/-43
ENN 6.3+/-1.4 6.9 +/-16 12.8 +/-3.2 14.6 +/-5.0 6.9 +/-1.4 75+-1.0
GWEBL 6.4+/-23 294 +/-15 10.2 +/-3.4 4.4+-23 24+-18 6.1+4/-32
Task 7 Task 8 Task 9 Task 10 Task 11 Task 12
Random 52.6 +/-34.4 33.5+-27.3 57.5+-31.4 24.0 +/-20.4 54.0 +/-32.0 28.7 +/-22.9
GP 8.5+/-3.4 7.5+/-2.83 10.0 +/-4.2 8.4 +/-4.4 8.8 +/-4.0 8.2+/-34
ENN 14.30 +/-4.1 52+/-13 5.7 +/-12 5+/-0.8 6.5 +/-0.9 6+/-3.0
GWEBL 3.5+/-12 3.0+/-1.0 3.5+/-1.1 21411 39+4/-22 2.7+4-11

Infarct Condition

Methods Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Random 455 +/-31.8 49.3 +/-32.8 322+4/-258 16.5 +/-12.7 58.6 +/- 35.0 43.1+-31.3
GP 10.5 +/- 5.0 7.6+/-57 9.4 +/-5.3 59+/-2.8 7.9+/-4.1 8.8 +/-5.7
ENN 8.3+/-26 3.4+/-0.8 5.2+/-1.0 5.8+/-12 76+4-22 8.4 +/-45
GWEBL 7.7+/-18 1.7 +-1.0 3.0+/-13 24 +-1.4 5.0 +/-3.0 43+4/-29
Task 7 Task 8 Task 9 Task 10 Task 11 Task 12
Random 51.5 +/-35.5 66.6 +/- 36.3 432 +/-19.7 39.1+/-31.2 96.5 +/- 14.5 35.2 +/- 30.6
GP 9.9 +/-4.1 10.3 +/-4.4 12.9+/-5.8 8.0+/-3.8 26.1+/-3.8 75+-47
ENN 6.7 +/-1.0 5.7 +/-0.9 8.0+/-3.8 7+-15 15.0 +/-3.7 8.9+/-3.6
GWEBL 3.4+/-1.1 4.0+-1.4 4.3+-1.1 29+/-1.1 8.3+/-45 3.0+-17

Figure 2. Localization steps (mean +/- std) for Sinus and
Infarct. Task 1 uses no prior information.

3.3. Experiment Setup

On the first task we used 2 initial pacing-site ECG pairs
to start our GWEBL model, then we generated a set of 11
subsequent tasks (so 12 in total) for our continual-learning
strategy to optimize without additional seeded data. The
sequence of tasks remained the same in each run, but we
conducted 50 random restarts with different initial data on
the first task.

4. Results

Figure 2 summarizes the results of the steps to localize
each task for both the healthy and infarcted heart condition,
expressed as mean £ std. The Random method shows an
extremely large number of steps to localize and high vari-
ability. Whereas the GP converges much quicker and more
consistently, requiring on average only 10.9 rounds com-
pared to 50.5 using Random.

The ENN (without continual-learning) shows an im-
provement over the GP as well. The ability to predict the
ECG signal itself allows the model to include more infor-
mation in its representation, thus it only requires on av-
erage only 7.8 rounds to converge. Finally, we examine
our proposed GWEBL method that is able to dynamically
transfer knowledge across tasks without any actual data be-
ing kept, and using this method results in convergence after
only 4.2 steps on average.

Statistical analysis shows that with 95% confidence, our
method localizes ECG targets in significantly fewer steps,
with an improvement of 65% over GP and 40% over ENN.

5. Conclusion

In conclusion, we present a novel framework employ-
ing continual-learning techniques to effectively transfer
knowledge across pace-mapping tasks without the need
for copying of data or memory. Using this our method
in the Bayesian Optimization context allows us to localize
the origin of VT episodes using significantly fewer steps,
enabling a faster and more reliable procedure.
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