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Abstract

The electrocardiogram (ECG) offers an accessible and
non-invasive assessment of human health. Chagas disease,
which affects nearly 6.5 million people across Central and
South America, is known to have symptoms that appear
in ECGs. Using time-series machine learning techniques,
critical information can be extracted from these ECGs to
detect Chagas disease as opposed to serological tests. As
part of the George B. Moody PhysioNet Challenge 2025,
we developed a classification approach consisting of two
components: (1) a multi-view representation of 12-lead
ECGs; (2) ensemble classification. Our team, GAIN-ECG,
developed a novel approach that combines kernel-based
feature extraction through MiniRocket with classical sig-
nal features, such as Heart Rate Variability (HRV), Dis-
crete Wavelet Transform (DWT), and Fast Fourier Trans-
form (FFT) features, through early fusion. We then employ
an ensemble framework to classify the onset of Chagas dis-
ease. Testing against a held-out subset of the public train-
ing set, our model achieved a challenge score of 0.481,
AUROC of 0.880, and F1 of 0.113. On the hidden valida-
tion set, our model received a challenge score of 0.090.

1. Introduction

As team GAIN-ECG, we participated in the 2025
George B. Moody PhysioNet Challenge. This challenge
invited teams to develop automated and open-sourced al-
gorithms for classifying cases of Chagas from electrocar-
diograms (ECG) [1,2]. Although ECG-based diagnoses of
Chagas disease can often be inaccurate, they can inform
the use of limited and invasive serological tests.

Our team’s Challenge entry tackles this classification
task through a novel two-part approach utilizing multi-
view representations of 12-lead ECGs and ensemble learn-
ing. The core of our approach lies in feature engineer-
ing and extraction. Assuming high performance can be
achieved by our downstream classifier, our model’s perfor-
mance hinges on the richness and reliability of the features.

Training and validating on the Challenge’s public train-

ing set and hidden validation set [3–7], we found that
cross-ECG machine batch effects significantly undermined
the reliability of our feature extraction process. To address
this, we utilize classical ECG features that directly cap-
ture signal-specific characteristics, rather than relying on
pretrained foundation models, which risk encoding batch-
dependent features that worsen performance when evalu-
ated on unseen sources. Also, we implement a convolu-
tional kernel-based encoder to extract additional features,
which are incorporated with early fusion.

2. Methods

Our two-stage multi-view ensemble classification
framework consist of two key components: (1) multi-view
ECG representation learning, and (2) an ensemble classi-
fier. The multi-view representation learning module [8] is
designed to capture the characteristics of input ECG sig-
nals from multiple, complementary perspectives. The en-
semble classifier [9] follows a similar principle, leverag-
ing diverse base classifiers with different inductive biases
to enhance predictive performance. As shown in Figure 1,
our framework begins by extracting classical features from
three different views: Heart Rate Variability [10] (HRV),
Discrete Wavelet Transform [11] (DWT), Fast Fourier
Transform [12] (FFT), and convolutional kernel-based rep-
resentation [13] (ConvK). The multi-view features are then
concatenated to be feed into the ensemble classifier [14],
which utilizes base classifiers with different induction bias.

2.1. Multi-view ECG Representation Learn-
ing

We denote one raw input 12-lead 400Hz ECG record as
x ∈ RL×T, where L = 12 and T is originally variable
depending on the record length (e.g., 7 or 10 seconds). To
maintain consistency across samples, each signal is either
truncated or zero-padded to a fixed length of T = 4096.
Heart Rate Variability Representation. We opt for HRV
as one view of ECG representation, which quantifies the
variation in time intervals between consecutive heartbeats.
To extract the HRV features, we first detect R-peaks in
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Figure 1. Overview of proposed framework. Every
ECG signal is first processed through the feature extrac-
tors in the first component to create multi-view ECG rep-
resentations. Then, Chagas diagnosis is determined by an
ensemble classifier in the second component.

each ECG record (the tallest spikes in the QRS complex).
For each individual lead x(i) ∈ RT, this is achieved by
finding a set C of all local-maxima in the signal:

C = {t ∈ {2, . . . , T − 1} :

x(i)[t -1] < x(i)[t] > x(i)[t +1]}.
(1)

To ensure the plausibility of our peaks, we enforce a
minimum distance of 200 ms between consecutive peaks,
which corresponds to a maximum heart rate of 300 bpm.
R-peaks are then greedily selected from C under this
constraint. Based on the obtained R-peaks, we derive
the following time-domain HRV features: (1) number of
peaks (R̄), (2) mean RR intervals (R̄R) that capture the
beat-to-beat timing; (3) Standard Deviation of RR inter-
vals (SDNN) that reflects overall heart rate variability; (4)
Root Mean Square of Successive Differences (RMSSD)
that emphasizes short-term variability between consecu-
tive beats. The sequence of RR intervals are obtained by
RRi = CRi+1 − CRi , where CRi+1 denotes the time of
the i-th R-peak in C. After concatenating HRV features
from all 12 leads, we obtain the HRV view representation
as hHRV = R̄ ⊕ R̄R ⊕ SDNN ⊕ RMSSD.
Discrete Wavelet Transform Representation. Applying
a 4-level DWT decomposition to each individual lead us-
ing Daubechies-4 (db4) wavelet, we get detailed coeffi-
cients dℓ at levels ℓ = 1, 2, 3, 4 (ignoring approximation
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Figure 2. Overview of AutoGluon Ensemble Classifier.
Base models are first trained with bagging, then organized
into stacked layers.

coefficients). The energy at level ℓ is

Eℓ(x
(i)) =

nℓ∑
k=1

dℓ[k]2, ℓ = 1, 2, 3, 4, (2)

where dℓ are the detail coefficients of the signal x(i) at level
ℓ after DWT, nℓ is the number of coefficients, and k is
the index of the coefficient within the level. These energy
features capture the power of oscillations across 4 different
frequency scales. Processing each lead individually and
concatenating, the DWT representation can be denoted as
hDWT = E1(x)⊕E2(x)⊕E3(x)⊕E4(x).
Fast Fourier Transform Representation. To extract the
FFT features, we first subsample signals down to 200Hz
to reduce computational complexity while preserving the
dominant oscillatory components. This allows the model
to capture global spectral patterns that may be overlooked
by R-peak statistics or wavelet energies. Applying the
FFT [12] to each subsampled signal of length N yields a
set of complex coefficients B and corresponding frequency
bins F. Since ECG signals are real-valued, their FFTs are
symmetric about zero, and we retain only the non-negative
frequencies. The amplitudes A are computed by

Ai =
2
N

· |Bi| , for Fi ≥ 0. (3)

The resulting representation is formed by concatenation
across all leads as hFFT = F⊕A.
Convolutional Kernel-based Representation. We fur-
ther apply convolutional kernels to ECG signals to cap-
ture meaningful patterns such as shape, frequency, and
variance. This is achieved through the MiniRocket en-
coder [13], which uses a set of fixed kernels applied at mul-
tiple temporal scales. Each kernel response is summarized



using the Proportion of Positive Values (PPV) statistic,

PPVk,d =
1

T

T∑
t=1

1((x(i) ∗ kd)[t] > qk,d). (4)

where (x(i) ∗ kd)[t] is the convolution of the signal x(i)

with kernel k at dilation d, and qk,d is a bias threshold. In
MiniRocket, dilations d are selected to evenly span a range
of temporal scales, allowing each kernel to capture patterns
across temporal scales. Bias thresholds qk,d are computed
as quantiles of the convolution outputs on the training data,
ensuring that each kernel-dilation pair produces a balanced
distribution of activations.

We configure the encoder with 504 kernels, which cor-
respond to MiniRocket’s base set of 84 kernels applied
across 6 different dilations. Since ECGs are multivari-
ate, kernel outputs are aggregated before computing their
PPVs. These PPV values then form the convolutional
kernel-based view representations as hConvK = Q.

2.2. Ensemble Classifier

From the multi-view ECG representation learning, we
obtain the final multi-view vector representation h =
hHRV ⊕ hDWT ⊕ hFFT ⊕ hConvK ⊕ hStat, where we further
calculate the means and standard deviations of each indi-
vidual ECG lead to obtain hStat. For our classification task,
we employ the state-of-the-art ensemble tabular predictor
fΘ via AutoGluon-V1.3.0 (AG) [14], thus ŷ = fθ(h). In a
nutshell, the ensemble classifier fθ incorporate a set of M
weak classifiers to make distinct predictions ŷi = fθ,i(h),
and the final ensemble prediction is obtained through a
greedy weighted combination:

ŷ =

M∑
i=1

wifθ,i(h), (5)

where wi are non-negative weights optimized by the en-
semble algorithm [15]. A wide range of weak classifiers
is included: KNN, RF, boosting models (e.g., CatBoost,
XGBoost, GBM), and tabular neural networks. Specifi-
cally, we configured AG to the “best quality” preset and
impose a 24-hour time limit on training. This further intro-
duce advanced ensemble techniques over Eq. (5) by multi-
layer stack ensembling and repeated k-fold bagging tech-
niques [14], as can be seen in Figure 2. The multi-layer
stack extend the traditional ensemble framework by allow-
ing adding more layers over the first layer of base models,
sharing the same principle as a multi-layer neural network.
A skip connection [16] of multi-view ECG representation
is added to further augment the second layer input. The re-
peated k-fold bagging [17] further improve the prediction
performance of each base model by fitting k copies of each
base model with a different data chunk held-out from each
copy.

Model Name Training Validation
Score AUROC AUPRC Score

RF 0.266 0.802 0.087 0.062
ConvK+RF 0.354 0.821 0.124 N/A
ConvK+AG 0.399 0.836 0.168 N/A
Multi-View+AG 0.410 0.853 0.177 0.090
Multi-View+AG+BE 0.426 0.861 0.205 0.085
ECGFounder+AG+BE 0.481 0.880 0.242 0.054

Table 1. Ablation study illustrating incremental im-
provements in performance as kernel-based features, the
AutoGluon ensemble, and additional signal features are in-
troduced into the model.

Training Validation Test Ranking
0.410 0.090 TBA 267/346

Table 2. Challenge scores for our selected entry (team
GAIN-ECG), including the ranking of our team on the hid-
den validation set. We used an internal 80%/20% split on
the public training set, repeated scoring on the hidden val-
idation set, and placeholder scoring on the hidden test set.

3. Results

Using the publicly available dataset, we performed
an ablation study with an 80%/20% train/test split to
track the benefit of each component we added to our
model. For each model, we compute the training chal-
lenge score, area under the receiver operating character-
istic curve (AUROC), and area under the precision-recall
curve (AUPRC). First, we began with a basic RF on
signal means and standard deviations. Second, we in-
corporated the convolutional kernel-transformed features
(ConvK) from MiniRocket. Third, we switched the clas-
sifier from RF to AG’s ensemble framework. Fourth, we
fused the additional signal features with the ConvK fea-
tures. In addition, we experimented with statistical batch-
effect elimination techniques (BE), such as z-score nor-
malization and data weighting, and explored replacing
the MiniRocket encoder with an ECG foundation model
(ECGFounder [18]).

Based on the ablation study, we finalized our approach
by fusing features from multiple ECG representations and
classifying the resulting multi-view feature vectors with an
AG-based ensemble classifier. During the unofficial phase
of the challenge, this model achieved a score of 0.564.
During the official phase, our model was then validated
and ranked with repeated scoring on the hidden validation
set, as shown in Table 2.

4. Discussion and Conclusions

By combining multi-view ECG representations with en-
semble modeling, our approach was able to achieve a
higher challenge score than the baseline random forest
model and ECG foundation model. The integration of clas-



sical signal features with kernel-based features provided a
richer representation of ECG to a robust ensemble frame-
work. However, a comparison of the training and valida-
tion scores highlights that our model struggles to general-
ize across datasets. First, the high AUROC values are mis-
leading in the context of the strong class imbalance in Cha-
gas disease. While the elevated training challenge score
suggests the model is accurate at its top 5% most confident
predictions, the low AUPRC reveals that it generates many
false positives at lower thresholds.

One possible reason for this lack of generalization is
the composition of the training set. The public training
set comprises three distinct datasets: two small datasets
containing only positives or negatives, and a larger mixed
set. This structure likely led our model to exploit dataset-
specific artifacts rather than features that are truly indica-
tive of Chagas disease. Consequently, our model was most
confident and accurate when classifying samples from the
two smaller homogeneous datasets. Because of the 5%
threshold, lower-confidence predictions from the larger
mixed dataset were excluded from the challenge score, in-
flating the training score. However, when evaluated on the
hidden validation set, this reliance on dataset-specific fea-
tures lead to a sharp drop in performance since the vali-
dation data came from entirely different sources. To ad-
dress the batch effect, we experimented with data weight-
ing, z-score normalizations, and foundation model embed-
dings. While these adjustments improved performance
on the training set, they did not translate into better gen-
eralization on the held out validation set. Future work
should investigate more robust approaches, such as adver-
sarial training, to mitigate these dataset-specific biases and
improve generalization for classifying highly imbalanced
classes.
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