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Abstract—Limited access to blood tests in underrepresented
regions, such as parts of South America, highlights the need
for cost-effective and non-invasive methods to identify Chagas
disease (CD). CD, caused by the protozoan Trypanosoma cruzi,
is a neglected tropical disease affecting an estimated six million
people worldwide. Efficient use of limited diagnostic resources
requires approaches that reduce false positives while increasing
the detection of true positive cases. To address this need, the
PhysioNet/CinC Challenge 2025 was organized to detect CD using
12-lead ECG signals, leveraging the fact that CD can cause car-
diac abnormalities detectable in ECG waveforms. In this study, as
part of the PhysioNet 2025 Challenge, we developed a CNN-based
lead-wise feature learning model for CD detection. Our team,
PhysioWinn, achieved a challenge score of 0.326 on the official
leaderboard, ranking 22nd out of 67 teams. In addition, we
performed a comprehensive statistical analysis to assess feature-
and lead-level importance, revealing that RR Interval RMSSD
was significant across all leads and that the most discriminative
features were concentrated in the precordial (anterior chest)
leads. These findings suggest that targeted feature engineering
in precordial leads may further improve CD detection in future
work.

I. INTRODUCTION

Chagas disease (CD), caused by the protozoan Trypanosoma
cruzi, is a neglected tropical disease that affects an estimated
six million people worldwide [1]. In its chronic phase, the
disease frequently leads to cardiac complications, including
conduction abnormalities and heart failure, many of which
are detectable in electrocardiogram (ECG) recordings [1].
The 12-lead ECG is a widely available, non-invasive, and
cost-effective diagnostic tool [2]. However, interpreting these
recordings manually, especially for early-stage Chagas-related
cardiac changes, is time-consuming and demands specialized
expertise. This has motivated research into automated, AI-
powered ECG analysis methods.

Recent studies have demonstrated the potential of con-
volutional neural networks (CNNs) to detect CD directly
from ECG waveforms [3]. Similarly, AI-driven ECG analysis
has shown promising accuracy in identifying left ventricular
systolic dysfunction among Chagas patients(AUC ≈ 0.86)
[4]. More broadly, DNNs trained on large-scale 12-lead ECG
datasets have outperformed cardiology residents in identifying
diverse cardiac conditions [5].

Motivated by these successes, we propose a CNN-based
model that processes lead-wise feature matrices extracted from
12-lead ECGs to detect CD. We evaluate its performance

on multiple datasets with diverse clinical and demographic
characteristics. Our contributions include:

• Designing an efficient CNN architecture tailored to lead-
wise ECG features.

• Extracting clinically meaningful morphological and tem-
poral ECG features for downstream classification.

• Evaluating generalization across datasets including
CODE-15%, SaMi-Trop, and PTB-XL.

II. METHODOLOGY

A. Datasets

To evaluate the proposed methods, we employed three pub-
licly available 12-lead ECG datasets with diverse acquisition
protocols and patient populations.

• CODE-15% – a subset of the CODE dataset, restricted
to Part 1 [6].

• SaMi-Trop – the complete dataset was used in our
experiments. All recordings in this dataset are associated
with positive labels, reflecting the presence of the target
condition [7].

• PTB-XL – the complete dataset was included. In contrast
to SaMi-Trop, all recordings in this dataset are associated
with negative labels [8].

These datasets exhibit substantial variation in recording
duration, sampling frequency, diagnostic distribution, and de-
mographic composition, and were therefore also recommended
by the challenge organizing committee.

B. Preprocessing

First, each lead signals were individually normalized to the
range [−1, 1] using a min–max scaling function:

x′
i = −1 + 2

xi −min(x)

max(x)−min(x)
, (1)

where xi is the ith raw signal value from the original signal
vector x, x′

i is the normalized value scaled to the range [−1, 1],
x denotes the full vector of raw signal values from a single
lead, min(x) is the minimum value in x, and max(x) is the
maximum value in x.

To ensure consistency across all ECG records, all 12-
lead ECG recordings were then downsampled to 100Hz. A
0.5Hz high-pass filter was subsequently applied to suppress
baseline wander and other low-frequency artifacts. Finally,



we processed five ECG records in parallel across multiple
CPU cores, which significantly reduced preprocessing time
and improved workflow efficiency.

C. Feature Extraction

After the initial preprocessing steps, we extracted ECG
features, as summarized in Table I. The NeuroKit2 Python
package was used to detect peaks, and the corresponding
values for each listed ECG feature were computed.

TABLE I: Extracted ECG features for each lead after prepro-
cessing.

# Feature
1 Mean QRS duration (ms)
2 Standard deviation of QRS duration (ms)
3 Mean QT interval (ms)
4 Standard deviation of QT interval (ms)
5 Mean R-wave amplitude (mV)
6 Standard deviation of R-wave amplitude (mV)
7 QRS net deflection (mV)
8 RR interval RMSSD (ms)
9 Mean P-wave amplitude (mV)
10 Standard deviation of P-wave amplitude (mV)
11 Mean P-wave duration (ms)
12 Standard deviation of P-wave duration (ms)

These features can be grouped into four categories:
• Basic interval features: mean and standard deviation of

the QRS duration and QT interval.
• Amplitude features: statistics of R-peak amplitudes and

the net electrical deflection during the QRS complex.
• Heart rate variability (HRV): computed using the root

mean square of successive differences (RMSSD) between
RR intervals.

• P-wave morphology: average and variation in both am-
plitude and duration of the P-wave.

The resulting feature matrix had the shape (B,L, F ), where
B is the batch size (set to 256), L is the total number of leads
(12), and F is the total number of features per lead (12).
The dataset was then split into training, validation, and testing
sets in an 8:1:1 ratio. Notably, in each split, only 5% of the
samples belonged to the positive class, with the remaining 95%
belonging to the negative class. Furthermore, we used lead-
wise imputation using scikit-learn’s IterativeImputer, which
replaces missing values (NaN) with estimates derived from
the relationships among features within each lead.

Finally, all features were standardized using z-score normal-
ization:

z =
x− µ

σ
, (2)

where x is the raw feature value, µ is the mean, and σ is the
standard deviation, both computed from the training set.

D. Proposed Architecture

The proposed model is a convolutional neural network
(CNN) designed to process lead-wise feature matrices of size
L×F for binary classification. It consists of two convolutional
blocks for hierarchical feature extraction, followed by fully
connected layers for classification. The overall proposed model

architecture is illustrated in Fig. 1, and Table II summarizes
the hyperparameters.

TABLE II: Summary of the proposed CNN architecture.

Stage Configuration
Input (B, 1, L, F )

Convolutional Block 1 2D Conv, kernel (3, 1), 32 filters
ReLU activation
Batch Normalization
Dropout (p = 0.2)

Convolutional Block 2 2D Conv, kernel (3, 1), 64 filters
ReLU activation
Batch Normalization
Average Pooling (2, 1)
Dropout (p = 0.2)

Fully Connected Layers Flatten to 3072-dimensional vector
Layer Normalization
FC: 3072 → 128
ReLU activation
Dropout (p = 0.7)
FC: 128 → 2 (output logits)

This architecture uses convolutional layers to capture spatial
dependencies across leads and feature dimensions, while the
fully connected layers consolidate these learned representa-
tions for the final binary classification.

E. Loss functions

Two loss functions were jointly optimized during training: a
class-balanced focal loss for classification, and a ranking hinge
loss to encourage separation between positive and negative
samples.

a) Focal loss.: We used focal loss [9] to address class im-
balance by down-weighting non-Chagas (negative) examples
and focusing the training on Chagas (positive) samples. For an
input logit vector z ∈ RC and a target class y ∈ {1, . . . , C},
the focal loss is defined as:

Lfocal = −αy(1− py)
γ log(py), (3)

where py =
exp(zy)∑C
c=1 exp(zc)

is the predicted probability for the
target class, γ > 0 (Was set it to 2) is the focusing parameter,
and αy is the class weight for class y. The class weights αy

were computed from the training set as:

αy =

{
1.0, if y = 0,
N0

N1
, if y = 1,

(4)

where N0 and N1 are the number of samples in classes chagas
negative 0 and positive 1, respectively.

b) Ranking hinge loss.: To encourage a margin between
positive and negative predictions, we incorporated a pairwise
ranking hinge loss:

Lrank =
1

|P ||N |
∑
i∈P

∑
j∈N

max (0,m− (si − sj)) , (5)

where P and N denote the sets of positive and negative
samples, si and sj are the predicted scores, and m > 0 is
the margin hyperparameter.



Fig. 1: Overall architecture of the proposed CNN for ECG classification. The network processes a (1×L×F ) input, where L
is the number of leads (12) and F is the number of features (12) through two convolutional blocks, followed by fully connected
layers for binary classification.

Fig. 2: (Left) Cohen’s d effect sizes for each ECG feature across all 12 leads, quantifying the magnitude of difference between
Chagas-positive and control groups. (Right) Binary significance map after Bonferroni false discovery rate (FDR) correction,
where 1 indicates statistical significance (p < 0.05) and 0 indicates non-significance. For each lead–feature pair, normality
(Shapiro–Wilk) and variance equality (Levene’s test) were assessed; if both assumptions were met, an independent two-sample
t-test was applied, otherwise a Mann–Whitney U test was used.

c) Final loss.: The total loss is a weighted sum of the
two components:

Ltotal = Lfocal + Lrank, (6)

F. Training Environment

All internal evaluations were performed on an NVIDIA
RTX A6000 GPU. We used the AdamW optimizer with a
weight decay of 0.1. A relatively strong decay yielded better
performance and reduced overfitting during our intermediate



evaluations. The initial learning rate was set to 1× 10−4, and
training was scheduled for 300 epochs with early stopping
patience of 50 epochs based on the validation challenge score.

A OneCycleLR [10] scheduler was used to gradually in-
crease the learning rate during the first 10% of training steps
(warm-up) from ηmax/25 to the maximum learning rate ηmax,
and then decrease it to ηmax/10

4 over the remaining steps.
The total number of steps was defined as Stotal = Nepochs ×
Nbatches. With these configurations, we performed a 3-fold
cross-validation to report our internally evaluated challenge
score.

III. RESULTS

A. Machine Learning

As shown in Table III, our 3-fold cross-validation achieved
a mean accuracy of 0.88 ± 0.01, an F1 score for positive
samples of 0.31 ± 0.02, an AUC-ROC of 0.81 ± 0.01, and a
challenge score of 0.32±0.02. This performance is consistent
with the results reported on the official leaderboard, indicating
no evidence of overfitting.

TABLE III: Cross-validation results for each fold. Mean row
shows mean ± SD. CS = Challenge Score.

Fold Acc F1 AUC-ROC CS
1 0.89 0.32 0.82 0.35
2 0.86 0.27 0.79 0.30
3 0.90 0.33 0.81 0.31

Mean ± SD 0.88± 0.01 0.31± 0.02 0.81± 0.01 0.32± 0.02
Leaderboard – – – 0.32

B. Statistical Analysis

Our statistical analysis, shown in Figure 2, revealed that
the RR Interval RMSSD feature was significant across all 12
leads (mean |d| = 0.387), with the largest effect observed
in V2 (d = 0.455; higher in positive cases). Mean P Du-
ration and Mean P Amplitude were significant on 11 leads,
with the strongest effects in lead II (d = −0.644) and V2
(d = −0.284), respectively, indicating lower values in positive
cases. Mean R Amplitude and Std QT Interval also showed
broad discriminative power (10 significant leads each), with
peak effects at V1 (d = −0.718) and V2 (d = 0.544).

Lead-level importance analysis indicated that precordial
leads V3 and V5 exhibited significant differences for all
12 features considered, while V2 and V6 were significant
for 11 of the 12 features. Although less consistent overall,
V1 achieved the single largest absolute effect size (|d| =
0.718). Overall, the precordial leads (V1–V6) concentrated the
strongest and most consistent effects, suggesting that discrim-
inative information for CD detection is primarily localized to
anterior chest leads.

IV. DISCUSSION

Our CNN model achieved a challenge score (CS) of 0.326,
demonstrating the potential of our lead-wise feature learning
approach. The CNN architecture, with kernel sizes set to
process one feature across all leads, successfully identified

patterns yielding a CS comparable to our cross-validation
performance (0.32). We believe this approach can be further
scaled using more advanced architectures such as graph neural
networks or transformer-based models.

From the statistical analysis, we demonstrated that several
features exhibit strong and consistent discriminative power,
particularly in precordial leads V1–V6. This suggests that CD
detection efforts could focus more on anterior chest leads,
potentially enabling simplified lead configurations for screen-
ing. Future work should explore targeted feature engineering
and model architectures optimized for these leads, aiming
to uncover additional unique and discriminative patterns in
Chagas-positive cases.

V. CONCLUSION

This study presented a CNN-based lead-wise feature learn-
ing approach for CD detection using 12-lead ECG signals.
Our method achieved an official PhysioNet Challenge score of
0.326, ranking PhysioWinn at 22nd out of 67 teams. Statistical
analysis revealed that precordial leads (V1–V6) consistently
produced the most discriminative features, suggesting that
future work should focus on extracting advanced, domain-
specific features from these leads. Such targeted feature
engineering, combined with more advanced deep learning
architectures, has the potential to further improve detection
performance.
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