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Abstract 

Introduction: Several strategies have been used to 

target persistent atrial fibrillation (persAF) driver. 

However, no unique strategy has been proven effective in 

patients with persAF. Machine learning (ML) classifiers 

using features extracted from wavelet scattering 

transform (WST) might enhance the ablation outcomes. 

Methods: 51 high DF locations were ablated in 10 

patients. 3206 non-contact electrograms (EGMs) were 

collected pre- and post-ablation using a balloon 

catheter.   1490 EGMs were labelled as positive ablation 

responses (AF termination or AF cycle length (AFCL) 

increased (≥10msec)), whereas 1716 EGMs were labelled 

as negative responses (AFCL increase (<10msec)) to 

catheter ablation. The WST technique was applied to 

extract features from EGMs after applying the QRST 

subtraction process. Several wavelet functions and 

dimensionality reduction methods were used. 10 ML 

classifiers were trained and tested by leaving EGMs of 

one patient out 10-fold cross-validation (CV). Results: 

The 10-fold CV overall accuracy, sensitivity, specificity, 

precision, F1_ score, AUROC, and balanced accuracy 

for the best scenario were using the Morlet function in 

WST, PCA, and the decision tree model with 78.91%, 

81.21%, 76.92%, 75.34%, 78.17%, 0.76 and 79.07%. 

Conclusions: WST, with the help of PCA, played a 

significant role in predicting the responses of ablating the 

EGMs and their effect on AF termination and CL 

changes. The obtained results demonstrate the superiority 

of this method over our previous work. 

 

1. Introduction 

Atrial fibrillation (AF) is the most common 

arrhythmia, affecting around 1-2% of the population. The 

risk of stroke is increased by around 5-fold in AF 

patients. Pulmonary vein isolation (PVI) is the 

cornerstone of ablation protocols for various types of AF 

[1]. Ablation strategies of persistent AF are more 

complicated and require ablation of additional sites in the 

atria, responsible for AF drivers. Several classical 

methods have been used to target the AF drivers, 

including dominant frequency (DF) [2], rotors [3], and 

complex fractionated atrial electrograms (CFAEs). 

However, the ablation outcomes using these methods 

have been suboptimal, and no ablation strategy has been 

verified in patients with persistent AF. Several signal 

processing techniques have been used to analyze the 

electrogram's characteristics for discriminating AF and 

non-AF signals. Most EGM analyses are based on Fourier 

transform (FT) analysis [4]. Due to the reciprocal 

relationship between the time and frequency resolution 

domains, an adapted version of the Fourier transform, 

known as the short-time Fourier transform (STFT), is 

considered for this effect [5]. STFT, which analyze the 

frequency content of signals over fixed-sized windows, 

has some limitations. Therefore, a wavelet transform 

(WT) is employed to analyze the frequency content of 

signals over different window sizes by using a wavelet 

function.  A wavelet-based activation detector for more 

reliable computation of activation time of EGMs during 

the AF [6].  

Deep learning techniques (e.g., convolutional neural 

networks (CNNs)) are used to extract features from raw 

signals or their time-frequency representations 

automatically. Hence, inspired from the large-scale deep 

learning algorithms on large datasets, we sought to have a 

better understanding of the deep network that utilizes 

some operations associated with CNNs [7, 8]. With its 

roots from CWT, wavelet scattering transform (WST) 

network extracts the frequency contents of the signals in 

an efficient way and produces coefficients/features that 

can be used as inputs to different machine learning 

classifiers. We used the WST technique to predict 

ablation outcomes in human persistent atrial fibrillation 

using non-contact electrogram signals. 

 

2. Materials and Methods 

The complete diagram for the proposed method, from 

data collection to outcomes, is shown in Figure 1. 



2.1. Dataset Collection and Labeling 

51 locations were identified in the left atrium of 10 

persistent AF (persAF) patients as high dominant 

frequency (HDF) regions to guide the catheter during the 

ablation procedure. A total of 3206 non-contact 

electrogram (EGM) signals were collected from the 

ablating of these locations using an Ensite array mapping 

catheter (Abbot, USA) (Figure 1A). The EGM signals for 

an 18-second duration were collected pre- and post-

ablations. The EGM signals were labeled by cardiologists 

from the Leicester Glenfield Hospital into two classes: a 

positive response to catheter ablation (AF termination or 

AF cycle length >=10ms), and a negative response 

(AFCL increased <10ms) [9]. Four out of ten patients had 

AF termination (three flutter and one sinus rhythm) 

before the PVI procedure. 

 

2.2. AF Signal Processing 

The collected signals were sampled at a rate of 2038.5 

Hz and then resampled at 512 Hz to reduce processing 

time and memory allocation.  A QRST complex 

subtraction process was applied to remove far-field 

effects resulting from ventricular activity, which can 

distort the true AF characteristics [10]. Lead I was used as 

a reference lead in the QRST removal process (Figure 

1B). 

2.3. Wavelet Scattering Transform  

The wavelet scattering transform (WST) is a time-

frequency analysis method. WST is commonly used in 

different biomedical applications due to its stability in the 

presence of local deformation [11]. The WST procedure 

is similar to a deep convolution network that iterates over 

three operators: complex wavelet transforms, a non-linear 

modulus operation |  |, and a low-pass filter (averaging). 

Figure 1C shows the features extracted using WST for the 

two-levels tree structure. At the first layer of WST, the 

original signal 𝑥(𝑡) is convolved with the mother wavelet 

function 𝜓,  which has a central frequency of λ. A non-

linear modulus |   | operator is applied to remove these 

oscillations. Lastly, a low pass filter 𝜙 is used to average 

the resultant convoluted signal. This process will be 

repeated for the other layers in WST to obtain the 𝑚 

scattering coefficients.  

𝑺𝒎𝒙 =  ||𝒙 ∗  𝝍𝝀𝟏
| ∗ … | ∗  𝝍𝝀𝒎

| ∗  𝝋𝑱       𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒎      1 

2.4. Wavelet functions 

Morlet and Daubechies order 4 (bd4) were used as 

wavelet functions to extract the scattering features 

coefficients. Each wavelet has special characteristics for 

analyzing biomedical signals. 

2.5. WST parameters 

The WST technique requires setting several parameters 

to achieve meaningful results. The filter is designed to 

support a certain size (T) of the input signal. J and Q are 

the most important parameters used to control the 

frequency and scale of the wavelet transform. J represents 

the number of octaves used in decomposing the WST, 

and the Q parameter (also called ‘quality factor’) is the 

number of wavelets per octave of frequencies (dyadic 

scale). In this study, a wavelet scattering network was 

constructed using two layers. We set T = 9216 samples 

(18 seconds), Q1 = 10, and Q2 = 1 wavelet per octave at 

the first and second layers in the scattering network, and 

the J parameter was set to 3. 

Figure 1 The pipeline for the proposed method using the WST technique. 



2.6. Dimensionality reduction 

Several dimensionality reduction (DR) techniques 

were used to reduce the number of features. Principal 

component analysis (PCA) and neighborhood component 

analysis (NCA) were used as supervised and 

unsupervised methods, respectively, to minimize the 

features in the feature vector (Figure 1D).  

2.7. Machine learning models 

Ten machine learning classifiers (random forest (RF), 

decision tree (DT), K nearest neighbors (KNN), 

AdaBoost, Gradient Boosting, Extra trees, support vector 

classifier (SVC), bagging and Bernoulli) were used for 

predicting the ablation outcomes based on the features 

from the WST and the reduction dimensionality methods 

PCA and NCA (Figure 1E).  

3. Results and Discussion 

Six scenarios were proposed to predict the ablation 

outcomes, as shown in Figure 2. A 10-fold leave EGMs 

one patient out cross validation (LEOPOCV) technique 

was used to assess the performance of each scenario.   

The best scenario was selected based on its performance 

in the metrics explained in Section 2.6.   Scenario 2 

(Morlet + PCA + decision tree model) showed the best 

performance with overall accuracy (ACC) of 78.91%, 

Sensitivity (SEN) of 81.21%, Specificity (SPC) of 

76.92%, Precision (PPV) of 75.34%, F1_ score of 

78.17%, AUROC of 0.76, and the balanced accuracy 

(BAC) of 79.07%. It can be seen that the metrics ranged 

from 76% to 79% for the highest performance 

classification (scenario 2) (Figure 3). The wavelet 

scattering-based Morlet function performed better than 

db4 in all scenarios. This might be because Morlet 

wavelets are well-suited for analyzing the time-frequency 

characteristics of non-stationary signals (such as EGM 

signals) by capturing both amplitude and phase 

information. Morlet wavelets offer a well-balanced time 

and frequency resolution for signals [12]. The algorithms 

based on decision trees work well with non-linear 

features; ML classifiers based on trees had the best 

performance among the others. 

 

 

Figure 2 Flowchart of the proposed 6 scenarios 

  To assess the performance of the best scenario 

(Scenario 2), a confusion matrix (CM) was used to 

display the number of positive and negative 

classifications. Figure 4 shows the CM and the receiver 

operating characteristics (ROC) for scenario 2. It can be 

seen that the second scenario had a good balance of TP 

and TN values. Therefore, to achieve the highest-

performance model for predicting the EGM responses to 

the ablation procedure, it is essential to consider the PCA 

as a DR method and the DT model as an ML classifier. 

The proposed WST method boasts an advantageous 

characteristic of the EGM signals: invariance to both 

dilation and translation. A comparison was made between 

the proposed method and our previous work [13], 

showing the superiority of this approach.   
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Figure 3 performance comparisons of the 6 scenarios 



Table 1 Comparison of the proposed method with our 

previous work 
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[13] 
DT 75.22 76.5 74.5 72.3 74.34 75.5 0.73 

Proposed 
method 

(scenario 
2) 

DT 78.91 81.21 76.92 75.34 78.17 79.07 0.76 

 

 

Figure 4 CM and ROC for scenario 2 

 

4. Conclusions 

WST, with the help of the PCA technique, played a 

significant role in predicting the responses of ablating the 

EGMs and their effect on AF termination and CL 

changes. Scenario 2 using WST features, Morlet as 

wavelet function, PCA and DT as classifier had the 

highest performance over others with overall accuracy 

(ACC) of 78.91%, Sensitivity (SEN) of 81.21%, 

Specificity (SPC) of 76.92%, Precision (PPV) of 75.34%, 

F1_ score of 78.17%, AUROC of 0.76, and the balanced 

accuracy (BAC) of 79.07%. Scenarios with the Morlet 

function and PCA technique showed the highest 

performance compared to using db4 and NCA techniques. 

A comparison between the proposed method and our 

previous work [13] shows the superiority of this method 

in predicting the ablation outcomes.  
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