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Abstract 

Introduction: Ablation of persistent atrial fibrillation 

(persAF) targets using dominant frequency (DF), rotors, 

and complex fractionated atrial electrograms has been 

disappointing. A transfer learning technique applied to 

spectrograms may be a promising tool for predicting 

ablation outcomes. Methods: 3206 non-contact 

electrograms (EGMs) were collected for a time duration 

of 4 seconds before and after ablating 51 high DF 

locations of 10 patients with persAF. Two categories of 

data were labelled: 1490 EGMs (nodes) had positive 

ablation responses (AF termination or AF cycle length 

(AFCL) increased (≥10msec)), whereas 1716 EGMs had 

negative responses (AFCL increase (<10msec)) to 

catheter ablation. After the QRST subtraction process, 

EGMs were converted to spectrograms to visualize the 

variability of signals in the time-frequency domain. The 

residual network, equipped with a 50-layer pre-trained 

model, was utilized to extract features and train and test 

the transferred fully connected layers. The proposed 

model performance was evaluated by leaving EGMs of 

one patient out in a 10-fold cross-validation.  Results: 

The 10-fold cross-validation accuracy, balanced 

accuracy, F1_score, AUC-ROC, sensitivity, specificity, 

and precision were 60.2%, 60.0%, 55.0%, 0.64, 51.5%, 

67.8% and 58.2% respectively, based on the testing 

dataset. Conclusions: A transfer learning technique 

applied to features extracted from spectrograms might be 

useful to predict the responses of ablating electrograms 

and their effect on terminating AF and changes in CL.  

 

1. Introduction 

Atrial fibrillation (AF) is the most common 

arrhythmia, affecting around 1-2% of the population. The 

risk of stroke is increased by around 5-fold in AF patients 

[1]. Pulmonary vein isolation (PVI) is the cornerstone of 

ablation protocols for various types of AF. Ablation 

strategies of persistent AF are more complicated and 

require ablation of additional sites in the atria responsible 

for AF drivers. Several classical methods have been used 

to target the AF drivers, including dominant frequency 

(DF) [2], rotors [3], and complex fractionated atrial 

electrograms (CFAEs) [4]. The ablation outcomes using 

these methods have been suboptimal in patients with 

persistent AF, however. Analysis of EGM signals has 

been used as a method to detect the AF drivers that are 

responsible for the initiation and perpetuation of AF. 

Spectral analysis has been widely used to find features 

relevant to the EGM signal characteristics of AF and non-

AF (e.g., DF [2], organization index (OI) [5]).  In the 

same context, temporal analysis of EGMs has also been 

considered to guide catheter ablation of AF targets (e.g., 

recurrence plot analysis (RQA) [6]. Power spectral 

density has also played a role in characterizing the EGMs 

for treating AF [7, 8]. Spectrograms contain information 

related to the frequency, time, and power of the signals. 

Therefore, in this work, spectrograms generated from 

EGM signals were used as input to a residual neural 

network via transfer learning techniques to classify the 

EGM responses to catheter ablation in terms of AF 

termination and changing the AF cycle length. 

 

2. Materials and methods 

The complete framework for the proposed method is 

shown in Figure 1, indicating the method for the 

prediction of EGM responses to catheter ablation 

(positive and negative). 

 

2.1. Dataset collection and labeling 

A total of 3206 non-contact electrograms (EGMs) 

were collected using a mapping catheter (Ensite array, 

Abbot, USA). These signals were collected by ablating 51 

locations identified as high dominant frequency (HDF) 

regions in the left atrium of 10 persistent AF (persAF) 

patients to guide the catheter during the ablation 

procedure. The EGM signals for a minute duration were 

collected pre- and post-ablations. The EGM signals were 

labeled by cardiologists from the Leicester Glenfield 



Hospital into two classes: a positive response to catheter 

ablation (AF termination or AF cycle length increasing by 

>=10ms), and negative responses (AFCL increasing 

<10ms) [9]. Four out of ten patients had AF termination 

(3 flutter and one sinus rhythm) before the following PVI 

procedure. 

 

Figure 1 The framework of the proposed method; starting from 

the electrogram data as inputs, splitting them into train and test 

sets, then generating the spectrograms from each signal, loading 

the ResNet50 model to extract 2048 features, and finally using 

machine learning models to classify the EGM responses. 

 

2.2. AF signal processing 

The collected signals were sampled at a rate of 2038.5 

Hz and then resampled at 512 Hz to reduce processing 

time and memory allocation.  A QRST complex 

subtraction process was applied to remove far-field 

activity resulting from ventricular activity, which can 

distort the true AF characteristics [10]. Lead I was used as 

a reference lead in the QRST removal process (Figure 2). 

2.3. AF Electrogram analysis 

After removing the QRST effect from the EGM 

signals, a spectrogram was generated. The 2-dimensional 

spectrogram image of electrogram signals can reflect the 

dynamic changes in the energy, frequency, and time 

components of these signals. This provides additional 

information about the characteristics of EGM signals. The 

process to construct the spectrogram using short time 

Fourier transform (STFT) is shown in the Figure 3. A 

spectrogram was constructed using the formula in 

equations 1 and 2, and a Hanning window was used as an 

anti-leakage window function with a length (NFFT) of 

1024 samples (2 seconds), and an overlap length between 

the successive windows of 512 samples (1 second). 

 

Figure 2 The QRST subtracting process (A) the EGM 

signals collected from the left atrium and their labelled 

(positive and negative) responses to ablation and (B) the 

QRST subtraction process using Lead I ECG as reference. 
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Where 𝒙[𝒏] is the original EGM signal being 

analyzed, 𝑤[𝒏 −𝒎] is the Hanning window function 

centered at time 𝑚, and |𝑿(𝝉,𝝎)|𝟐 is the spectrogram 

(power/frequency content over time).  
 

2.4. ResNet50 using transfer learning 

The Residual Neural Network 50 (ResNet50) model 

has been considered one of the well-known models used 

in computer vision. This deep learning model is trained 

on large and diverse categories of datasets. This pre-

trained model can be used to solve different computer 

vision problems using the transfer learning technique.  

Transfer learning was used to freeze the feature extraction 

layer in the ResNet50 model and use the pre-trained 

weights to extract features from the spectrograms. The 

classifier part of the Resnet50 model was adapted to the 

new task for predicting the ablation outcomes. Figure 4 

shows the feature extraction and transferred layer 

classifier parts used in this work.  The input image size 

for the ResNet50 model is 224 × 224 × 3 for color 

images. We resized all spectrogram images to 224 × 224-

pixel resolution to match the size of the input layer in the 

ResNet50 model. The model architecture comprises a 

series of convolutional layers and fully connected layers. 

The first convolution layer consists of 64 different kernels 

of size 7 × 7 and a stride size of 3 × 3, followed by a max 

Figure 3 The process of converting the EGM signal to a spectrogram using a Hanning window of size 1024 samples 

(2 seconds) with an overlap of 512 samples (50%) between windows. 



pooling operation with a stride size of 2. The following 

convolution blocks (Conv Block and Identity Block) are 

made of three convolution layers (1 × 1 × 64 kernels), (3 

× 3 × 64 kernels), and (1 × 1 × 256 kernels). These are 

repeated 3 times as shown in Figure 4. Following the 

same procedure, convolution layers (1 × 1 × 128 kernels), 

(3 × 3 × 128 kernels) and (1 × 1 × 512 kernels) are 

repeated 4 times; followed by three convolution layers (1 

× 1 × 256 kernels), (3 × 3 × 256 kernels) and (1 × 1 × 

1024 kernels) repeated six times and lastly three 

convolution layers (1 × 1 × 512 kernels), (3 × 3 × 512 

kernels) and (1 × 1 × 2048 kernels) repeated 3 times. 

Then, global average pooling is applied to generate 2048 

features from each spectrogram image. These features 

were used as input to a ResNet50 fine-tuning classifier to 

classify the EGM responses to catheter ablation. Four 

fully connected layers with nodes (2048, 1024, 512, 256) 

were used to build the classifier part, followed by batch 

normalization after each layer. We used halving patterns 

in layer sizes to enable the network to progressively 

compress and abstract the information. The batch 

normalization process makes training faster, more stable, 

and less sensitive to initialization. Figure 4 shows the 

architecture of the ResNet50 model, showing the name, 

size, and operations of each of the 50 layers. 

3. Experimental results and discussion 

The transfer learning technique was applied using the 

ResNet50 pretrained model via the spectrogram images 

for predicting the catheter ablation outcomes. A leave one 

patient out 10-fold cross-validation (LOPOCV) technique 

was used to split the train and test sets to ensure that the 

model is not biased. 10-fold cross-validation was applied, 

where electrograms from 9 patients were used to train the 

model, and the remaining patient was used for testing. 

This process was repeated 10 times, and an average was 

taken for evaluating the model for seven evaluation 

metrics (overall accuracy, balanced accuracy, sensitivity, 

Specificity, precision, F1_score, and AUROC). The 

proposed model was trained for 50 epochs. In each epoch 

during the training and validation, the accuracy and loss 

were calculated. We used the Adam optimizer with a 

learning rate of 0.0001, beta_1=0.9, beta_2=0.999, and 

epsilon=1e-07. We used a cross-entropy loss and a batch 

size of 512, which is the number of spectrograms that 

passed through the network simultaneously during the 

training process.  

The 10-fold CV accuracy, balanced accuracy, 

F1_score, AUC-ROC, sensitivity, specificity, and 

precision were 60.2%, 60.0%, 55.0%, 0.64, 51.5%, 67.8% 

and 58.2%, respectively, based on the testing dataset from 

the proposed method. Figure 5A shows the confusion 

matrix, which shows the true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN) values 

for the 10 EGM patients. The ROC and the AUC for the 

proposed transfer learning approach are shown in Figure 

5B. It can be seen that the model predicts EGM negative 

responses to ablation more accurately than positive 

response signals (Figure 5A). The spectrogram transforms 

the electrogram signals into the time-frequency domain, 

Figure 4 Transfer learning using the ResNet50 model. It shows the layers used to extract 2048 features from spectrogram 

images with size (224 × 224 × 3). Also shows the process of freezing the classifier layers (red block) and replacing them 

with 4 layers (yellow blocks) for predicting the ablation outcomes. 



revealing several parameters such as the DF content [2], 

repetitive patterns, fractionation [11], and temporal 

variability that have been used in characterizing EGM 

signals for predicting ablation outcomes [12]. Therefore, 

the obtained results, representing the EGM signal in the 

time-frequency domain helped in classifying the positive 

and negative responses of these signals to the ablation 

procedure.  

 

                          

 
 

Figure 5 (A) Confusion matrix (CM), and (B) the ROC 

for the proposed method 

 

4. Conclusions 

Spectrograms, with the help of the transfer learning 

technique using the ResNet50 model, played a role in 

predicting the responses of ablating the EGMs and their 

effect on AF termination and CL changes. The model 

achieved a 10-fold CV overall accuracy of 60.2%, 

balanced accuracy of 60%, F1_score of 55%, AUC-ROC 

of 0.64, sensitivity of 51.5%, specificity of 67.8% and 

precision of 58.2% by evaluating on the test (unseen) 

dataset. This is an indication that the time-frequency 

representation of the EGM signals might be helpful for 

discriminating the EGM responses to catheter ablation.  
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