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Abstract

As part of the George B. Moody PhysioNet Challenge
2025 under the team name Ephemeris Labs, we developed
a deep learning algorithm to detect late-stage Chagas dis-
ease in electrocardiogram signals (ECG). Chagas disease,
transmitted by the parasite Trypanosoma cruzi, causes al-
most 10,000 deaths per year but affects 6.5 million people.
An efficient diagnosis can help physicians provide an ade-
quate treatment plan, but serological testing is limited. We
propose a deep learning model that would test for cardiac
alterations associated with Chagas and could be put on a
Raspberry Pi, making it more accessible to hospitals. The
use of deep learning-based models is a rapidly growing re-
search topic in the medical field for classification and di-
agnostics. In addition, equipment is not designed for low-
cost materials, open source code, and data sets to ensure
better accessibility. In this work, we create a long- and
short-term memory network to tackle this problem using
the TensorFlow library on the George B. Moody PhysioNet
Challenge open-source dataset. Under the challenge, our
model scored 0.05 (ranked 343 out of 369). In our devel-
opment outside the official scoring, we present a promising
model for live classification on a Raspberry Pi 4 and an
evaluation of our TensorFlow Model and TensorFlowLite
FlatBuffers to demonstrate their minimal run-time require-
ments while maintaining an acceptable accuracy of 98%.
By focusing on open-source and portable solutions, our
approach offers a scalable method to prioritize the testing
and treatment of Chagas disease, particularly in resource-
limited settings.

1. Introduction

Chagas disease, or American trypanosomiasis, is a par-
asitic disease caused by the Trypanosoma cruzi parasite,
spread by triatomine (kissing bugs) primarily in Latin
America. Acute chagas can be treated in the early stage
but is often asymptomatic and therefore develops into a
chronic disease. Those with late stage chronic Chagas
disease will develop often some type of cardiomyopathy,

which can lead to heart failure and increase likelihood of
death.

The George B. Moody 2025 Challenge invites teams to
develop automated, open-source algorithms for identifying
cases of Chagas disease from electrocardiograms (ECG)
[1L2]. Accurate detection of arrhythmia abnormalities is
key to diagnosis. An efficient diagnosis can help physi-
cians provide an adequate treatment plan, but serological
testing is limited. Electrocardiograms (ECGs) remain a
gold standard for measuring heartbeats and diagnosing ar-
rhythmia. They are applicable in assessing the severity of
a disease, monitoring patients in clinical trials, and screen-
ing individuals for high-risk occupations [3|]. Develop-
ing a low-cost, efficient device will help with the growing
need of diagnosing cardiac arrhythmia and potentially save
many lives.

Typical ECG tests usually span in the length of minutes.
If a signal is inconclusive, the patient may need to wear a
Holter monitor for all-day heart monitoring [4]. One study
was able to integrate an Al model onto a Holter monitor
for 24-hour monitoring to detect atrial fibrillation [5]]. The
major problem of this study was their use of Holter data
for the training of their model. The dimensions of this data
are magnitudes larger than standard ECG data, requiring
much more training and data to achieve an optimal model.
An Al-enabled ECG test helps physicians reduce the num-
ber of inconclusive tests and is more practical than an Al-
enabled Holter monitor. This drives the need for further re-
search into deep learning embedded devices for ECG clas-
sification. Most technologies in this realm are inefficient
for resource-constrained IoT devices and embedded sys-
tems and require raw data transmitted to a remote server
[6]. A simpler and low-cost solution must be examined
more deeply.

Deep learning (DL) is a new and evolving technology
being applied in the classification of medical data for pre-
vention and diagnostics. DL is part of machine learning
that models patterns similar to the structure of the brain.
An example of this kind of data processing and prediction
is through ECG arrhythmia classification.

Both Raspberry Pi and Arduino are low-resource and
cost circuits that support the use of TensorFlow Lite mod-



els. The Raspberry Pi is a single-board and modular
computer meant for high-performance, low-cost, general-
purpose computing platforms built on the ARM architec-
ture and running the Linux operating system [7]. We see
this as an opportunity to develop methods for high access,
low-cost, healthcare.

In the following sections, we highlight the development
of an LSTM deep-learning framework to classify Chagas
disease in a patient dataset. With further development, the
TensorFlow Lite model could be an important tool in ar-
rhythmia detection and diagnosis onto an embedded sys-
tem. Our work aims to build on the work done by others
and introduce new potential areas of research in this field
before a low-cost, effective embedded system can be de-
veloped for clinical settings.

2. Methods

The goal of this study is to present a working model
and workflow of an ECG arrhythmia classification on a
Raspberry Pi and Arduino system. We present a Tensor-
Flow and TensorFLowLite LSTM models able to label
if a patient’s ECG signal shows signs of Chagas disease
or not from the provided datasets of the challenge[8H12]].
Each data set contains a padded raw 12-lead ECG single
(DI, DII, DIII, AVR, AVL, AVF, V1, V2, V3, V4, V5,
V6) with a sampling frequency of 400 Hz and duration
of 10s/7s. Our method demonstrates arrythmia detection
through ECG classification. Furthermore,our model can
be converted to a form used on microcontroller systems,
such as the Raspberry Pi Pico, for future implementations
of a low-cost device capable of flagging irregular signals.
All materials and methods are easy to follow and are open
to the public through GitHub.

For the model’s architecture, TensorFlow’s LSTM
method was chosen for its benefits in time series forecast-
ing and anomaly detection [13]]. LSTMs can learn and use
time series data to make predictions or flag the data found
to be an anomaly.

Long short-term memory (LSTM) networks is a pre-
dominantly used to learn, process, and classify sequential
data because these networks can learn long-term depen-
dencies between time steps of data [14}/15]. The LSTM
network is a recurrent neural network (RNN) that deals
with the vanishing gradient problem present in traditional
RNNs through a gating mechanism controlling the flow of
information across the network [14,(15]]. This makes the
model great for machine translation, speech recognition,
natural language processing, video analysis, and time se-
ries forecasting. [[15].

It is important to note that to ensure the best output and
the least amount of errors, our model has the following
library dependencies in python:

e joblib==1.4.2

e numpy==2.0.2
o pandas==2.2.2
o scikit-learn==1.6.0

o wfdb==4.1.2
e h5py==3.12.1
o tensorflow==2.19
o keras==3.9.0

« PyWavelets==1.8.0
o scipy==1.15.2
These are listed in our requirements text file, and can be
used to set up a Docker image or virtual machine to match
the environment we run in.

2.1. Feature Extraction

The features used in the model are the sex and approx-
imate age of the patient, and a raw ECG 12-lead signal.
The sex is represented by a one-hot encoded 1 by 3 matrix
of whether the patient is female, male, or other. Since raw
ECG signals often have missing data or corrupted leads,
we check for finite signals and perform some signal pro-
cessing before passing them into the model. On each lead,
the mean and standard deviation are taken as a form of
processing to help with training speed and detection of pat-
terns. It is a way to denoise and bring out key differences
in signals.

2.2. Model Architecture

Our model contains 3 LSTM layers and one dense layer,
shown in Figure 1.

The LSTM layers run with a batch size of 16, a number
divisible by the training, validation, and testing data set
lengths. They also have an input shape of a maximum data
chunk length of 1 and a dropout of 0.2. Each of these layers
returns a set of vectors with a dimension of the batch size.
The final layer of the model is a dense layer that fully con-
nects the previous layers and changes the output dimension
to match the number of units specified [15]. As shown in
Figure 1, the dimensions of each layer are present. This
illustrates that the input shape is 3-dimensional and the fi-
nal output is a 2-dimensional representation of if the signal
indicates the presence of Chagas disease.

The input shape is given by batch size (16), the time step
(7), and the input dimension, number of features (1). The
time step was determined by the features extracted ([age],
one-hot encoding sex, [signal mean, signal standard devi-
ation]) and is the length of the features. These values in-
fluence the sizes of the subsequent layers, where the final
layer outputs a shape of batch size and number of labels
(2).

Within each LSTM layer, there are 192 LSTM cells- the
value of time steps (t)- that run the specific functions and
matrix math of the model. This is exhibited in Figure 1.
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Figure 1. LSTM Model Architecture for the detection of
Chagas disease

We used the standard sigmoid functions and tanh activation
functions as they are the most commonly used. To cap-
ture the full complexity of the dataset, the units value was
set to 192. This increases the number of neurons at each
gate’s functions within each LSTM cell. Furthermore, this
increases the number of parameters at each layer, making
the overall model more complex. All cells build on each
other by passing the cell state and hidden state to the next
in the series.

The model ran with L2 recurrent regularization of value
0.01 to help with overfitting. In testing, we saw that
adding the typical ReLU activation layer caused an issue
of the loss equaling infinity- exploding gradient problem,
so we stuck with the tanh function. The model ran for 10
epochs for training. Upon compilation, the sparse categor-
ical cross-entropy loss function and Adam optimizer were
used. Both are typical methods for LSTM networks, but
this particular loss function helps with numerical and mul-
tiple matching.

2.3. Model Output

The model output comes from the final layer in our
LSTM model architecture. We used a dense layer with
softmax activation in order to obtain a binary output with

the predicted probability of each label.

2.4. TensorFlow Lite

Our model, is built as TensorFlow but for future appli-
cations we convert it to a TensorFlow lite for model size
reduction. The compression of the model is pertinent for
an embedded system, model performance over a live ECG
signal, and faster computations on the CPU.

3. Results

In this section, we present the results of our model for
the detection of Chagas disease. Using LSTM, we were
able to place in 342nd place in the George B. Moody Chal-
lenge. We received a score of 0.05, where the score repre-
sents the true positive rate out of the total number of Cha-
gas cases. In addition to this score, our model is able to
obtain about 98% training accuracy with a loss of about
0.10 after 10 epochs.

Training | Validation | Test | Ranking
0 0.05 - | 342/369

Table 1. Challenge scores for our selected entry
(Ephemeris Labs), inclusion of the test set will be done af-
ter the conference. We use a LSTM model with the given
dataset to detect for Chagas disease.

4. Discussion and Conclusions

In this paper, an LSTM-based classification algorithm
was proposed to label a 12-lead ECG signal as having Cha-
gas disease or not. This model has a training accuracy of
about 98%. There is potential capability to run live or
recorded signals on a Raspberry Pi and Arduino device.
The goal of this work was an easy/versatile way to train
and transport a working model onto a Raspberry Pi and
Arduino system. In this process, we wanted to thoroughly
test the model for its use on a low-cost, simple computing
device. The end program could take in any ECG signal
and flag abnormalities on a wearable device. This device
would be accessible to most and easy to use, a great advan-
tage for the medical field.

We were able to achieve a loss of 0.1 and an accuracy
of 98%. Likely, the 98% training accuracy is due to the
imbalance of positive Chagas cases with the number of
negative Chagas cases. Having this imbalance will inflate
the accuracy as the model will try and lean towards the la-
bel with the larger number of samples. Like other works,
we found that LSTM is a great model for classifying ECG
signals. We also concluded that more LSTM layers and
adjustments in the hyper-parameters provided better out-
comes.



To improve on this model, we believe changing the in-
put features would be key in the successful detection of
Chagas disease. As LSTM has proven to be effective in
handling signals well, we expect to see the successful im-
plementation of an LSTM model on the ECG signals them-
selves as a successful method to detect Chagas. This could
be achieved through signal processing over the 12 leads.
This includes padding to the largest signal, down-sampling
by a factor of 4, performing a sym 3 wavelet transfer and
z-score normalization. One key issue, when developing
this model is the memory allocation needed to successfully
train this type of model. In future work, this will need to be
addressed to train on the entirety of a 12-lead ECG dataset.
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