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Abstract

To understand the etiology of multigenic disease like
atherosclerosis a polymerase chain reaction based gene
array containing 65 single nucleotide polymorphisms
(SNP) was analyzed. To asses the possibilities of pattern
recognition techniques in detecting unfavorable genetic
combinations two approaches were analyzed. A selection
of these 65 single nucleotide polymorphisms formed the
input to both binary logistic regression models and to
self-learning artificial neural networks. Repeated
analysis showed that both methods performed equal.
Further research to improve the differentiating power of
both methods should focus first on decreasing the number
of otherwise indeterminable polymorphisms.

1. Introduction

The advance in molecular genetics helps us to move
from monogenetic disease to the unraveling of more
complex diseases including multigenic disease states as
atherosclerosis.(1;2) Whereas in monogenetic disease
very often one base change in the coding region of a gene
is sufficient to cause a disease, in multigenic disease the
effects of one base change are modest, and therefore a
composition of several unfavorable changes could
explain the disease etiology. Subtle genetic variation
involving one or several bases occur approximately every
1000 base pairs These changes can be positioned
throughout the gene or in between genes. Therefore only
a minority will effect the coding sequence (exons). Even
if the coding sequence is involved the amino-acid order
may be unchanged due to redundancy in the genetic code.
Some changes in introns or the regulatory part of the gene
could have an effect on transcription of the gene and lead
to an increase or reduction of protein product.(3) Little is
known on the influences of base changes in the
extragenic regions. If a specific DNA change is found in
the population in more then 1% of the individuals, the
variation is indicated by the term polymorphism.
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When only one base is involved these differences
between individuals are indicated by the term single
nucleotide polymorphisms (SNP).
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Figure 1. Structure of the endothelial nitric oxide gene.
Arrows indicate the position of three different
polymorphisms

Depending on the localization of intragenic SNPs they
are indicated by a minus sign when the position is
preceding the transcription initiation site (regulatory
DNA). For instance the A-948G polymorphism in the
eNOS gene (figure 1) indicates an adenine to guanine
polymorphism at position 948 bases before the first
exon.(4). If a change occurs in an exon it could result in
an amino acid change (eg Glu298Asp). Here, the
polymorphism leads to replacement of amino acid 298
glutamine by arginine.(5-7) In order to upscale SNP
analysis and to unravel multigenic disease different
approaches can be followed. SNPs can be analyzed in
separate biochemical reactions, using the polymerase
chain reaction (PCR). For the detection of one SNP two
primers have to be used. By mixing primers several SNPs
can be detected in one reaction. In the array used here, 4
membranes have been preloaded with DNA templates to
which PCR product can hybridize. The hybridization
product can be recognized by antibody based chemical
reaction.
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Figure 2. In the left panel de genes spotted on the filter
are indicated, with in the middle the polymorphism
tested. On the picture (right panel) a filter is shown where
for each variation one or two bands can be detected,
depending on the genotype.
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As man has a double set of chromosomes (paternal and
maternal) there are two variants of each gene (allele). For
each position two variants are possible leading to three
possibilities for each SNP. For instance an individual can
be homozygous for the A at position —948, or for the G at
this position. Alternatively, heterozygousity can exist at
this particular locus (A and G allele, figure 2). (8) A more
sophisticated approach is based on microarrays which can
be used for high density SNP mapping. Currently more
then 2 million SNPs have been identified (9)

To evaluate endothelial function and atherosclerosis
we tested a polymerase chain reaction based gene array
containing 65 single nucleotide polymorphisms (SNP) in
disease related genes as documented in previous studies.
Representing a classical pattern recognition problem, the
analysis of combinations of unfavorable genes was
evaluated using both classical statistical techniques and
self-learning neural networks.

2. Methods

The array was performed on DNA samples of 89
patients with diabetes mellitus and impaired endothelial
function and 47 healthy controls. Endothelial function
was assessed by measuring changes in forearm blood
flow after pharmacological interventions. Every SNP has
three possible outcomes resulting in an almost infinite
number of unique combinations. To evaluate whether
self-learning techniques could be applied in this type of
pattern recognition, an artificial neural network was
conceived, trained and tested with an independent test set.
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The experiment comprised a number of subsequent
steps. Using univariate analysis all 65 variables were
evaluated to asses if they could contribute in
differentiating healthy and diabetes mellitus cases. Only
those 10 variables with a p<0.1 were accepted in the
study. With these variables it was tested whether a binary
logistic regression model could be constructed that would
classify all 136 cases correctly.

Subsequently, the 136 cases were randomized 10
times. After every randomization 86 cases were selected
as a training set and the remaining 50 cases as an
independent test set, resulting in 10 training sets and 10
corresponding test sets. Each training set was used to
generate a neural network, that could be evaluated using
the complementary test set. Subsequently all neural
networks were analyzed further separately. Their training
sets were used to build 10 logistic regression models, and
evaluated with the corresponding test sets. Finally the
overall performance of these logistic models including all
cases from both training and test set was quantified.

2.1. The neural network

The input of this network was formed by those 10 out
of these 65 variables that had reached a significance level
of less than 10% using univariant analysis after exclusion
of missing values, representing 38 different options.
These 38 different categories were formed by 10
variables each representing three possibilities plus 8 out
of these 10 variables showing at least one missing value.
From the combined 136 patients 86 were randomly
selected as training and 50 as test set. To generalize the
results this randomization was repeated 10 times resulting
in 10 different networks. The artificial neural network
was composed of 38 input neurons, 38 hidden and one
output neuron. The neural networks were constructed
using Brainmaker Professional. All standard settings
were selected to make these 10 resulting networks
comparable.

2.2. The binary logistic regression model

All logistic regression models in this study were
calculated using the SPSS 9 software package. All
variables were entered forward stepwise conditional in
the model. For each variable in the equation, the
coefficient (B), its standard error, the estimated odds ratio
[exp(B)], the confidence interval for exp(B) and the log-
likelihood if removed from the model, was calculated.
Finally for each of the 136 cases both the observed and
the predicted group was stored together with the
predicted probability.



The distribution of the 10 selected SNP in the sick and
the healthy group is given in table 1. The two columns
indicate the number of cases in the sick and the healthy
group. The digits at the right site indicate in which of the
the logistic regression models 1 — 10 SNP was entered.

SNP included sick healthy includedin:
Apo(a)C93T 0
CcC 53 10
CT 17 0
TT 0 3
missing 19 34
ApoCIII T3206G 1to 10
GG 4 8
TG 43 12
TT 42 17
missing 0 10
PON1 GIn192Arg 0
AA 5 4
GA 27 28
GG 51 15
missing 6 0
LDLR Ncol+- 1,3,6,7,8
++ 37 13
+- 29 24
-- 16 2
missing 7 8
TNFP Thr26Asn 0
AA 10 3
TA 53 22
TT 21 20
Missing 5 2
ACE ins/del 0
DD 19 8
ID 37 26
I 22 5
missing 11 8
ADRB2 GIn27Glu 23
GInGIn 22 19
GInGlu 52 24
GluGlu 15 3
missing 0 1
TNFa G(-376)A 4,5
AA 3 0
GA 21 3
GG 63 43
Missing 2 1
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TNFo G(-308)A 3
AA 6 1
GA 39 14
GG 44 32
TNFP Thr26Asn 4,5,10
AA 7 1
TA 59 25
TT 23 21

Table 1. The distribution of those single nucleotide
polymorphisms analyzed in the study.

3. Results

The performance of the 10 created training and test
sets are given in table 2. Training of the network took a
median of 55 runs (range 35-82). The evaluation of the
trained network resulted in a mean correct classification
of 73.8 + 4.2% (range 68-82). The logistic regression
models resulted in a mean correct classification of 71.4 +
5.1% . This difference is not statistically different.

Rand. |Runs Test Train | Test SNP

# NN NN% [LR% |LR% |included
1 35 82 74.4 75.5 AB

2 82 72 75.6 77.6 A,C

3 64 74 87.2 69.4 A,B,C.E
4 40 78 82.6 69.4 ADJF

5 55 76 80.2 76.0 ADF

6 55 70 80.2 68.2 AB

7 59 68 79.1 65.3 AB

8 58 70 80.2 64.0 AB

9 55 74 74.4 78.0 A

10 35 74 79.1 70.2 AF

Table 2. The results of the 10 neural networks and of the
corresponding binary regression models. The columns
represent: number of randomization, number of training
runs required for 100% training, % correct predicted by
NN test set, % correctly trained by Logistic regression
model, % correctly predicted test cases by logistic
regression model. The right column indicated which SNP
were entered in the logistic regression model: A =
ApoCIII T3206G, B = LDLR Ncol+-, C = ADRB2
GIn27Glu, D = TNFa G(-376)A, E = TNFa G(-308)A F
= TNFp Thr26Asn




3.1.  Overall results

To evaluate the behavior of single cases, the
classification 1 (healthy) or 2 (diseased) was added up in
these 10 logistic regression models independent of the
fact whether they were used as a training or as a test case.
Table 3. illustrates the distribution of the classification
for both the diseased and the healthy group. A sum of 10
represents 10 times healthy, 11 represents one wrong
classification , etc. A total of 20 indicates 10 times the
classification disease. In 16 healthy and in none of the
disease cases the SNPs were misinterpreted consequently.
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Figure 3. The distribution of all classifications.

4. Discussion

These results demonstrate that pattern recognition
techniques like self-learning artificial neural network
might have a place in determining whether certain
combinations of polymorphisms are hidden in large-scale
arrays. However, a significant number of polymorphisms
could not be interpreted.

Additional improvement could be obtained by refining
the quality of the array and by quantifying the certainty of
the outcome of each polymorphism determined using
such an array. In some instances the staining results in
bands that do not reach the threshold for band
recognition. Interestingly, when we study a group of
diabetes patients the most predominant gene
combinations found are in the area of the lipoproteins.
This is not surprising as diabetes is a metabolic disease
involving both glucose handling, but also other metabolic
pathways including lipids.
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