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Abstract

A method for the extraction of global parameters such
as rotation and deformation matrices and translation
vector, for left ventricular (LV) motion analysis in a
three-dimensional (3D) space, is presented. The global
parameters are estimated from the analysis of 3D
echocardiographic sequences.

First step is the segmentation of LV chamber applying
level set technique. Second step consists in applying the
Umeyama theorem to two LV frames of a cardiac cine-
loop: the outputs of this step are the translation vector
and the rotation and deformation matrices that
characterize the motion between the two analyzed frames.
From these parameters the principal axes of deformation,
the deformation modules, the rotation angles and also the
percent volume variation between the two frames can be
calculated. The results obtained on phantoms
demonstrate that the algorithm for the motion analysis is
correct. This preliminary study also shows that on 3D
echocardiographic data the results are acceptable.

1. Introduction

Echography is one of the most widely used diagnostic
techniques for cardiac imaging. The traditional
transthoracic modality allows to perform an analysis of
the morphology of the cardiac structures such as cavities,
cardiac valves and big vessels. Besides cardiac motion
estimation is very important in understanding cardiac
dynamics and in noninvasive diagnosis of heart disease.
The quantification of global parameters to evaluate LV
motion and contractility, wall thickness, diskinetic and
akinetic area extension, degree of ischemia and infarction
and aneurysm presence would be useful for the
management of patients affected by “dynamic” diseases
as ischemic cardiomyopathy. Actually an accepted
method for the analysis of LV motion field does not exist.
In literature two classes of algorithms to study ventricular
wall motion are proposed. The first class is based on
optical flow techniques. The quantification of heart
motion is based on the computation of the 3D vector field
associated with the non-rigid motion of the time-varying
brightness of a sequence of cardiac echo data. Different
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approaches are possible to calculate the optical flow [1-
3]. The second class is based on geometric algorithms
that is, starting from a manual or automatic edge
detection, for each image of the sequence, the motion
field is identified applying geometric methods as the
equidivision method [4], the radial method [5], the
centerline method [6] and in a 3D domain the
centersurface method [7].

The cited methods are affected by many problems
concerning low data resolution, noise presence, observer
relative orientation respect to the heart (orientation that
changes during the cardiac cine-loop), hypothesis on the
geometry of the ventricle, not valid in pathological
conditions. Besides, the analysis of the movement of left
ventricle is influenced by the fact that the heart is free to
rotate and translate inside the chest, also following
movements due to respiration. To compensate the
movement of the heart not directly due to contractility,
different types of data realignment have been proposed
but the problem is still open.

In this study we propose the application of the least-
squares estimation of transformation parameters between
two point patterns [8] represented by two endocardial
surfaces. The two endocardial surfaces are obtained
applying a segmentation technique based on level set

. models [9-13] to real-time 3D echocardiographic data

(RT3DE) [14,15].

2. Method

The method for the extraction of global parameters for
LV motion field analysis is divided in two steps
described in the following paragraphs.

2.1. Segmentation procedure

The LV endocardial surface has been segmented
applying the level set formulation of interface motion [9]
as described in [12]. The result of this segmentation step
is a 3D array in which the position of the zero-crossing
values represents the endocardial surface location. The
distance between the two estimated surfaces has been
calculated: for each point in the second frame the point at
minimum distance in the first frame is looked for. The
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coordinates of these two points represent the spatial
coordinates respect to the ultrasound transducer position
and refer to endocardial surface location and they have
been stored in two matrices.

2.2. Estimation of global parameters

Let’s be J and K the two 3Xn matrices representing
two patterns of n points. The problem is to find the
similarity transformation parameters between these two
patterns giving the minimum value of the mean square
error. This problem is called absolute orientation problem
and it can be solved in a 3D domain using both iterative
and non-iterative algorithms. A strict solution, based on
the singular value decomposition of a covariance matrix
of the data presented in [16], is given by Umeyama [8].

The mean square error e’ is defined as
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and the minimum value & of ¢* of the two patterns with
respect to the similarity transformation parameters (R is
the rotation matrix, t is the translation vector, D is a
diagonal matrix and j; and k; with i=1..n are the sets of
points of J and K) is:
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E is a covariance matrix of Jand K, p;and p, are the
Jjk
mean vectors of J and K, and 0'}2» and a,f are the

variance around the mean vectors of J and K respectively.

If the rank (Z )>2 the optimum transformation
Jk

parameters are:
R=USVT
t=p, —Rp J
For a complete proof of the statement see Umeyama [8].

This theorem always gives the correct transformation
parameters even when the data are corrupted.

The two parameters give information about the roto-
translation motion. If the values in the matrix R are
known, the rotation angles a, B, and y respect to x, y and z
axes respectively can be obtained by the following
representation of R:

cosycos S sinycos 8 - sinf
~sinycosa + cos winflsina  cosycosa + sininfsina  cos fsina
sinjsina + cos winBcosa@ - cos wina + sinsinfcosa  cos fcosa

The 3X3 matrix that deforms the pattern represented
by the matrix J in the matrix K after the roto-translation
motion can be expressed as a second order tensor in
which the simmetric part is the deformation matrix D we
are looking for [17]. The eigenvectors v;, v,, v; of the
matrix D represent the principal deformation axes and the
corresponding eigenvalues A, A;, A; are the deformation
ratios along the principal axes.

The volume variation between
expressed by:
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Therefore from this analysis, to describe motion in a
3D domain, we obtain the following global parameters:
«  Rrotation matrix;
. a, B,y rotation angles respect to the x, y and z axes;
« ttranslation vector;
o D deformation matrix;
« 'V, Vy, v3principal deformation axes;
« Ay, Ay, A3 deformation ratio along the principal axes;

J and K can be

AV Lo
5 percent volume variation.

In our study the matrices J and K are represented by
the endocardial surfaces described by n points and
referring to two different frames of the cardiac cine-loop.

3. Results

In this section the results obtained applying the model
on synthetic and RT3DE data are presented.

To test the model a known roto-translation and
deformation motion has been applied to different kind of
synthetic 3D objects (cubes, spheres and pyramids). For
all the cases the difference between the final
configuration K and the configuration obtained applying
the transformation DXx[RxJ+t] is zero. Besides the
computed errors on deformation ratio along the reference
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Table 1. Comparison between the results obtained applying an a priori known motion of 3D object.

Motion n Obtained results Expected results
Cube rototranslation 8 1 1 1 0o 1 1 1 0
Cube deformation 8 7 7 7 342 7 7 7 342
Cube rototranslation 8 0.512 0.863 1 -0.558 0.5 1 1 -0.5
and deformation §
Pyramid rototranslation 5 1 1 1 0 | 1 1 1 0
Pyramid rototranslation 5 0.8 0.8 0.8 -0488 038 0.8 08 -0.488
and deformation |
Sphere contraction 31224 0.917 0917 0917 -0.2298 0917 0.917 0917 -0.23

axes and on rotation angles were zero (Table 1). An
example is presented in Figure 1.
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v, =[-0.0497 -0.7011 0.7113]
v, =[0.5629 0.5687 -0.4303]
v, =[0.8250 -0.4303 -0.3663]
a=90°, f=0°, y=0°
Figure 1. The roto-translation and deformation of a
pyramid: the estimated parameters.

The regression line between the real and estimated
volumes variation is y =x -0.01, r=1.

The model has been also tested on RT3DE data
belonging to a cardiac cine-loop. The percent volume
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variation values between two frames obtained by our
model have been compared with those obtained by
segmentation technique based on level set models (Table
2).

Table 2. Frame by frame comparison of percent volume
variation during systolic phase; €® is the least mean
square error.

2

n AV/IV% AV/IV% €
obtained  expected

Frames 1-2 18718 -8.97 -6.4 1.5
Frames 2-3 17516 -10.93 -10.15 1.3
Frames 3-4 16932 -25.4 -22.2 1.8
Frames 4-5 13634 -3.17 -5.22 1.4
Frames 5-6 13812 -6.9 -7.65 1.9
Frames 6-7 13038 -2.88 -1.62 1
Frames 7-8 12984 -29.6 -33.11 1

The regression line was y = 0.93x+1.09 and the
correlation coefficient was r = 0.98 (Figure 2).
For a small set of RT3DE data the ejection fraction (EF)
values obtained with this model and with magnetic
resonance imaging (MRI) have been compared (Figure
2).
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Figure 2. Correlation between obtained and expected
percent volume variation values.



Figure 3. End-diastole (left) and end-systole (right)
endocardial surfaces of RT3DE data. EF values obtained
by our segmentation method is EFgrspg =18.3% and by
MRI data is EFMRI=243%

4. Conclusion

A method based on least square estimation of
transformation parameters between two point patterns has
been applied to evaluate LV motion analysis.

The results obtained on phantoms demonstrate that the
algorithm for the motion analysis is correct (r=1). This
preliminary study also shows that on real-time 3D
echocardiographic data the results are acceptable. The
errors obtained on real data can be explained considering
two different reasons: the non perfect point to point
correspondence between the two surfaces and the error
that affects the LV volume values obtained applying MRI
or level set based segmentation. Actually the
correspondence between the two surfaces is calculated
considering a rotational free motion field.
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