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Abstract

A parallel solver for numerical simulations of a full

cardiac cycle in three dimensional domains, based on

the anisotropic Monodomain and Bidomain models, is

presented. The solver employs structured isoparametric

trilinear finite elements in space and a semi-implicit

adaptive method in time. Parallelization and portability

are based on the PETSc parallel library. Large-

scale parallel computations have been run, simulating

anisotropic dispersion of the action potential duration.

1. Introduction

Knowledge of the rules that govern the full cardiac

cycle is a prerequisite for understanding and interpreting

abnormal sequences that occur in conduction disturbances.

The excitation and recovery phases are influenced by the

direction of the myocardial fibers and by the anisotropic

conductivity of the intra and extracellular media. While

the former phase has been examined in considerable

detail both experimentally and numerically (see [1, 2, 3]),

much less is known concerning the latter (see [4, 5, 6,

7]). During a normal heartbeat, the time course of the

ventricular transmembrane potential displays mainly three

phases having different time and space scales. At first in

the excitation phase, a moving layer associated with the

upstroke of the action potential sweeps the entire cardiac

domain. Subsequently, small spatial and temporal potential

variations are observed in the long plateau phase and finally

smooth changes, in space and time, are associated with

the repolarization phase. To tackle the high computational

costs involved in large scale simulations of a full cardiac

cycle in a three dimensional domain, adaptive and parallel

tools are required.

2. Mathematical models

The Bidomain model. In the Bidomain approach, the

anisotropy of the two averaged continuous media, the

intra and the extracellular medium, are characterized

by the conductivity tensors Di(x) and De(x) related

to the arrangement of the cardiac fibers which rotate

counterclockwise from the epicardium to the endocardium,

(see [8]). Moreover, from [9], the cardiac tissue has a

laminar organization and may be conceived of as a set of

muscle sheets running radially from epi to endocardium.

Therefore, at any point x, it is possible to identify a triplet

of orthonormal principal axes al(x), at(x), an(x), with

al(x) parallel to the local fiber direction, at(x) and an(x)
tangent and orthogonal to the radial laminae respectively

and both being transversal to the fiber axis. Denoting

by σi,e
l , σi,e

t , σi,e
n the conductivity coefficients measured

along the corresponding directions, then the conductivity

tensors Di(x) and De(x) related to orthotropic anisotropy

of the media are given by:

Di,e = σi,e
l ala

T
l + σi,e

t ata
T
t + σi,e

n ana
T
n

while for axially isotropic media, i.e. σi,e
n = σi,e

t , we have

Di,e = σt
i,eI + (σl

i,e − σt
i,e)ala

T
l .

The intra and extracellular electric potentials ui, ue in

the Bidomain model are described by a reaction-diffusion

system coupled with a system of ODEs for ionic gating

variables w. Given the applied currents per unit volume

Ii,e
app, satisfying the compatibility condition

∫

H
Ii
app dx =

∫

H
Ieappdx, the initial conditions v0, w0, then, for an

insulated cardiac domain H , ui, ue, w satisfy the system:






















cm∂tv − div(Di∇ui) + Iion(v, w) = Ii
app

−cm∂tv − div(De∇ue) − Iion(v, w) = −Ie
app

∂tw − R(v, w) = 0, v(t) = ui(t) − ue(t)
n

T Di∇ui = 0, n
T De∇ue = 0,

v(x, 0) = v0(x), w(x, 0) = w0(x),

where ∂t = ∂ /∂t, cm = χ ∗ Cm, Iion = χ ∗ iion,

with χ the ratio of membrane area per tissue volume, Cm

the surface capacitance and iion the ionic current of the

membrane per unit area. The system uniquely determines v,

while the potentials ui and ue are defined only up to a same

additive time-dependent constant related to the reference

potential, chosen to be the average extracellular potential

in the cardiac volume by imposing
∫

H
ue dx = 0.

The Monodomain model. Assuming equal anisotropy

ratio of the two media, i.e. Di = λDe with λ constant,
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then the Bidomain system reduces to the anisotropic

Monodomain model consisting in a parabolic reaction-

diffusion equation for the transmembrane potential v
coupled with a system of ODEs for gating variables:







cm∂tv − div(Dm(x)∇v) + Iion(v, w) = Im
app,

∂tw − R(v, w) = 0, w(x, 0) = w0(x),
n

T Dm∇v = 0, v(x, 0) = v0(x),

where Dm = σl ala
T
l +σt ata

T
t +σn ana

T
n , with σl,t,n =

λσi
l,t,n /(1 + λ) and Im

app = (λIi
app + Ie

app)/(1 + λ).

3. Numerical solver

Finite element space discretization. The computer solver

for the simulation of the mono- and bi-domain models

is applied to cardiac tissue volume H assuming that the

domain is discretized by a structured grid made up of

hexahedral isoparametric Q1 elements and we denote by Vh

the associated finite element space. A semidiscrete problem

is obtained by applying a standard Galerkin procedure and

choosing a finite element basis {φi} for Vh. We denote

by M = {mrs =
∫

H
ϕr ϕsdx} the symmetric mass,

by Am,i,e = {am,i,e
rs =

∫

H
(∇ϕr)

TDm,i,e ∇ϕsdx} the

symmetric stiffness matrices and by Ihion, I
(m,i,e),h
app the finite

element interpolants of Iion and Im,i,e
app , respectively.

Semi-implicit time discretizations. The time discretization

is performed by a semi-implicit method using for the

diffusion term the implicit Euler method, while the

nonlinear reaction term Iion is treated explicitly. The use

of an implicit treatment of the diffusion terms appearing

in the Mono- or Bi-domain models is essential to allow an

adaptive change of the time step according to the stiffness

of the various phases of the heartbeat. The ODE system

for the gating variables is discretized by the semi-implicit

Euler method; in this way we decouple the gating variables

by solving the gating system first (given the potential vn at

the previous time-step)

(wn+1 − w
n)/∆t = R(vn,wn+1)

and then solving for u
n+1

i
,un+1

e
in the Bidomain case

(

cm

∆t

[

M −M
−M M

]

+

[

Ai 0
0 Ae

])(

u
n+1

i

u
n+1
e

)

=

cm

∆t

(

M( u
n

i
− u

n
e
)

M[−u
n

i
+ u

n
e
]

)

+

(

M[−Ihion(vn,wn+1) + Ii,happ]
M[ Ihion(vn,wn+1) − Ie,happ]

)

where v
n = u

n

i
− u

n
e

; as in the continuous model, v
n is

uniquely determined, while u
n

i
and u

n
e

are determined only

up to the same additive time-dependent constant chosen by

imposing the condition Mu
n
e

= 0.

In the Monodomain case we have to solve for v
n+1

(cm

∆t
M + A

)

v
n+1 =

cm

∆t
Mv

n−MIhion(vn,wn+1)+MIm,h
app

The solution of the discrete model is computationally

expensive because of the involvement of different space and

time scales. Due to the high computational costs, adaptive

and parallel tools are then required in order to successfully

complete large-scale simulations. While both tools can

in principle be applied to both space and time, we have

chosen to use adaptive methods in time and parallel solvers

in space. We employed an adaptive time-stepping strategy

based on controlling the transmembrane potential variation

∆v = max(vn+1 − v
n) at each time-step, see [10]. The

dynamics of S gating variables are described by equations

of the form ∂twj = Rj(v, wj) = (wj∞(v) − wj)/τj(v)
for j = 1, .., S; in order to guarantee a control on the

variation of wj too [11], given v
n, due to the linearity in

wj , the equation is integrated exactly. In this paper, we

consider the Luo-Rudy phase I (LR1) model (see [10]),

since it is one of the complex gating systems mostly used

in recents 3D simulations; in this model the calcium ionic

concentration is updated using the explicit Euler method.

Numerical quadrature with a 3D trapezoidal rule is used

to compute the integrals, therefore the mass matrix M
is lumped to diagonal form. In our implementation, we

have actually reordered the unknowns writing for every

node the ui and ue components consecutively, so as to

minimize bandwidth of the stiffness matrix. The linear

system at each time step in the discrete problems is solved

iteratively by the preconditioned conjugate gradient (PCG)

method, using as initial guess the solution at the previous

time step. Parallelization and portability are realized

using the PETSc parallel library [12] and a preconditioned

conjugate gradient solver at each time step with block

Jacobi preconditioner and ILU(0) on each block.

4. Results

We have performed several numerical experiments in

three dimensions on parallel architectures, with both the

Monodomain and the Bidomain models. The parallel

machines employed are an IBM SP RS/6000 Power4 with

512 processors Power 4 - 1300 MHz, grouped into 16 nodes

of 32 processors and 16 GB RAM each (www.cineca.it),

and an HP SuperDome 64000 with 64 processors PA8700

- 750 MHz and 64 GB RAM (www.cilea.it). The

domains considered are either cartesian slabs or truncated

ellipsoids modeling portions of the left ventricle. In

both cases a structured grid of (ni · nj · nk) hexahedral

isoparametric Q1 elements was used. In the numerical

tests, we have used the following parameters: χ =
103 cm−1, Cm = 10−3 mF/cm2, {σe

l , σ
i
l , σ

e
t , σ

i
t} =

{2, 3, 1.35, 0.315} mΩ−1cm−1 and σe
n = σe

t /2, σi
n =

σi
t/10 in the orthotropic case. In the Monodomain model

Dm is defined by setting σl,t,n = σi
l,t,nσe

l,t,n/(σi
l,t,n +

σe
l,t,n) in order to obtain, at first order, the same conduction

velocity along and across fibers as in the Bidomain model.

As in [2], the fibers rotate intramurally linearly, proceeding

counterclockwise from epicardium to endocardium, for a

total amount of 120o and of 90o in the ellipsoidal and in
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Table 1. Monodomain and Bidomain with LR1 model.

AT= assembling time, IN= average number of PCG

iterations per time-step, TS= average time per time-step

Monodomain with LR1 model

# proc. mesh AT IN TS

8 150·150·100 7.7 s 4 2.7 s

16 300·150·100 8.5 s 4 3 s

32 300·300·100 9.1 s 5 3.6 s

64 600·300·100 9.2 s 5 3.6 s

128 600·600·100 10.6 s 8 5.1 s

Bidomain with LR1 model

# proc. mesh AT IN TS

8 100·100·70 12.9 s 98 40.2 s

16 200·100·70 13.3 s 127 55.5 s

32 200·200·70 15.7 s 148 72 s

64 400·200·70 16.2 s 176 91.9 s

128 400·400·70 18.4 s 244 129.7 s

the slab geometry respectively. The initial conditions are

(u0
i ,u

0
e) = (−84, 0) mV, so that v

0 = −84 mV and we

apply a stimulus of 250 mA for 1 msec on a small area (3

or 5 mesh points in each direction). Other than potentials

and gating variables, at each time-step, we compute

also the activation (ACTI) and the repolarization (REPO)

times, defined as the times when the action potential (AP)

crosses −60mV during the upstroke and the downstroke

respectively. In the LR1 model the slow inward current

was scaled by a factor 2/3, yielding an action potential

duration (APD) of about 265 msec. In order to evaluate the

performance of the parallel solver, we have considered the

Mono and Bi-domain models with LR1 gating, simulating

the initial depolarization of some ellipsoidal sections. The

sections are chosen in increasing sizes so as to keep constant

the number of mesh points per subdomain (processor). The

domain varies from the smaller section with 8 subdomains

to half ventricle with 128 subdomains. The computing

platform is the IBM SP4. The results, reported in Table

1, show for the Monodomain model that the algorithm

seems practically scalable, and even for 128 processors,

the number of PCG iterations grows to just 8; the results

for the Bidomain model indicate that while the assembling

time remains reasonable (under 20 sec), the average number

of PCG iterations per time-step and the average time per

time-step are now much larger. This is not only due to

the doubling of the unknowns, but can be attributed to the

limits of the one-level preconditioner and to the severe ill-

conditioning of the Bidomain iteration matrix.

Full cardiac cycle. In order to study the influence of

fiber rotational anisotropy on the repolarization sequence

and on the dispersion of APD, we simulate a complete

cardiac cycle in a slab of cardiac tissue. The fibers

rotate intramurally linearly with depth for a total amount

of 90o, i.e. al(x) = ex cos α(r) + ey sinα(r), α(r) =
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Figure 1. Orthotropic Bidomain slab: 2 × 2 × 0.5cm3.

Vertex stimulation in a slab without heterogeneity of the

cellular membrane properties. Isochrone lines of the

depolarization time (first column ACTI ), repolarization

time ( second column REPO ) and action potential duration

(third column APD); reported below each panels are the

maximum, minimum and step in msec of the displayed map.

π(1 − 2r)/4, r ∈ [0, 1]; on the upper-epicardial (lower-

endocardial) face of the slab the fiber direction is −45o

(45o). In the orthotropic anisotropy case, we choose an =
ex sinα(r) − ey cos α(r) and at = ez . In order to

emphasized the effects of the fiber rotational anisotropy, we

apply a stimulus at an epicardial vertex of the slab in which

wave front propagation is mainly across the epicardial fiber.

Since the excitation of the entire slab requires about 80

msec, the time interval for simulating the cardiac cycle

is on the order of 360 msec. The adaptive time-stepping

algorithm automatically adapts, in an efficient way, the time

step size in the three main different phases of the heart

beat, while the number of PCG iterations of the linear

solver change considerably, increasing to a a maximum of

about 250 iterations in the depolarization phase, indicating

that our preconditioner and/or initial guess are not yet

satisfactory. Simulation of a full cardiac cycle on a slab of

size 2×2×0.5 cm3, discretized with a fine mesh 200×200×
50, using 25 processors of the HP SuperDome machine,

took about 6.4 days for the the Bidomain model and about

5 hours for the Monodomain model. We compared the

performance of the two computer platforms mentioned

above by simulating the Monodomain model on a slab with

dimensions 4× 4× 0.5 cm3 and mesh 400× 400× 50: the

HP SuperDome machine with 32 processors took about 20

hours and the IBM SP4 machine with 64 processors took

about 2.5 hours. The isochrone lines of the ACTI, REPO
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Figure 2. Orthotropic Monodomain slab: 2 ×2 × 0.5cm3.

Same format as in Fig.1

and APD are displayed in Fig. 1 for a Bidomain model with

orthotropic anisotropy. Repolarization wave fronts exhibit a

somewhat smoother shape and faster propagation compared

with the excitation sequence as shown by the isochronal

lines on the epi, midwall and endocardial layers. We

underline that the APD patterns show a spatial dispersion

in spite of the homogeneity of the individual cellular

membrane properties assumed. Moreover the simulation of

the orthotropic Monodomain model, (see Fig. 2), exhibits

the same qualitative features of the ACTI, REPO and APD

patterns as displayed in the Bidomain model. Therefore the

anisotropic feature of the APD dispersion can be examined,

at a qualitative level, simulating the Monodomain model

thus avoiding the higher cost required, at present, by the

Bidomain simulations. In order to reduce the influence

of the boundaries, we have also considered an orthotropic

Monodomain model on a larger slab having dimensions

4× 4× 0.5 cm3, see Fig. 3. The comparison between Figs.

2 and 3 shows that the spatial features of the dispersion

of the APD are not only due to boundary effects but can

be partly attributed to the electrotonic modulation related

to the fiber rotational anisotropy. We have also performed

simulations in axially isotropic media obtaining the same,

but less emphasized, anisotropic features of the APD

dispersion compared with the orthotropic case. Future work

will address the influence of intramural heterogeneity of

membrane ionic currents, allowing for differences between

epicardial, M cells and endocardial cells.
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