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Abstract 

Abnormal HRV could confound risk stratification. 

Method: Hourly Poincaré and FFT plots examined in 270 

tapes from the Cardiovascular Health Study.  After 8 

years, 63 subjects had died. Hourly short and longer-term 

detrended fractal scaling exponent and interbeat 

correlations were calculated. Hourly HRV was scored as 

normal (0), borderline (0.5) or abnormal (1) from plot 

appearance and HRV values. Scores were summed by 

subject and normalized to create an abnormality score 

(ABN,0-100%). Cox regression determined the 

relationship of ABN and mortality.  Results: Increased 

ABN was associated with mortality, p=0.005. After 

adjustment for age (p=0.001) and gender (p=0.005), 

ABN remained associated with mortality (p=0.015). 

When ABN was dichotomized at 57%, HR and SDNN 

were not different, but higher ABN (N=67) had 

significantly increased short and intermediate-term HRV 

and mortality. Conclusion: Even with a relatively crude 

quantification method, abnormal rhythms were 

associated with both mortality and increased HRV.  

1. Introduction 

Heart rate variability (HRV), based on the fluctuations 

of intervals between normal heart beats, reflects 

autonomic nervous system function [1]. HRV is analyzed 

in the time and frequency domain, and using non-linear 

techniques. Decreased time or frequency domain heart 

rate variability (HRV) is independently associated with 

increased mortality in clinical [2] and population [3,4] 

studies. In cardiac patients, non-linear HRV, reflecting 

increased randomness of heart rate, has been strongly 

associated with mortality [5].  Thus, HRV includes two 

components: normal variation associated with better and 

abnormal, more random variation associated with worse 

outcomes. Increased randomness can elevate time and 

frequency domain HRV, so that higher HRV can be 

associated with higher risk in some patients, diluting the 

predictive value of traditional HRV measures.  

In this study, we applied a semi-quantitative method, 

using both graphical and non-linear analyses, to quantify, 

on an hourly basis, the degree to which HRV for each 

subject was normal or increased by abnormal patterns of 

non-respiratory sinus arrhythmia. This was expressed as 

an "abnormality score" (ABN). The relationship of ABN 

and subsequent mortality in a subset of the 

Cardiovascular Health Study (CHS), an NIH-sponsored 

longitudinal study of coronary heart disease and stroke in 

5,201 men and women aged 65 years and older was 

determined. In addition, we compared time and frequency 

domain HRV for those with ABN above and below the 

point at which short-term HRV was markedly elevated.  

2.1 Subjects 

The baseline Holter cohort with usable tapes consisted 

of 1384 participants. ID codes in the CHS began with 

3,4,5 and 6.  For the current intensive study, we choose 

all 290 subjects who had baseline recordings and ID 

codes beginning with the number 3. 

2.2 Analysis of Holter recordings 

Tapes were processed at the Washington University 

School of Medicine Heart Rate Variability Laboratory, 

using a GE Marquette MARS 8000 Holter analyzer (GE 

Medical System, Milwaukee, WI). All analyses were 

reviewed in detail by one of us (PKS) with special 

attention to ensuring that only normal-to-normal (NN) 

beats with uniformly detected onsets, within each 

recording, were included in the analysis.  The longest and 

shortest true NN intervals were identified for each tape, 

and intervals outside of these limits, as well as all ectopic 

beats, excluded from all calculations and plots. After 

editing, the labeled QRS data stream was transferred to a 

Sun workstation (Sun Microsystems, Palo Alto, CA) for 

24-hour time domain, frequency domain and non-linear  

HRV analysis.  Hourly power spectral and Poincaré plots 

were created, and hourly values for the HRV indices 

described below calculated.  For an hour to be acceptable 

for analysis, 80% of the data had to be NN intervals. 

2.3. Hourly HRV indices 
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HRV variables examined included: the short-term 

fractal scaling exponent (DFA1), the longer-term fractal 

scaling exponent (DFA2) and the interbeat correlation 

coefficient (ICC).   

1) DFA1 and DFA2.  Detrended fluctration analysis 

(DFA) quantifies the fractal scaling properties of the 

short-term R-R interval time series.  Higher values for 

DFA reflect a more correlated time series, while 

decreased values reflect a highly random time series [6,7].  

The details of this method have been described elsewhere 

[6,7].   Hourly DFA was determined/1000 beats and 

averaged, on a hourly basis, for short-term (≤11 beats, 

DFA1) and longer-term (12-20 beats, DFA2) NN interval 

data.  

2) Interbeat Correlation Coefficient (ICC). The 

Pearson’s correlation between NN intervals was 

calculated/1000 beats and averaged/hr. Increased 

irregularity in the heart rate time series results in 

decreased values for the ICC[8]. 

2.4. Characterization of hourly power 

spectral plots 

Figure 1 shows normal-appearing hourly FFT plots 

from day and nighttime periods. Normal FFTs can be 

characterized as “organized-looking” with a distinct 1/f 

distribution of spectral power in the region between 10
-2

 

and 10
-4

 Hz and relatively little power (area under the 

curve) above the high frequency (HF) band (0.4 Hz).  

Night and naptime plots tend also to have a distinct peak 

in the high frequency (HF) band, associated with higher, 

respiration-associated vagal modulation of heart rate 

during sleep (Figures 1a,c). This peak is generally absent 

during the daytime awake periods.  Additionally, as seen 

in Figure 1a, at night or during naps, a peak is sometimes 

seen in the very low frequency (VLF) band (0.004-0.04 

Hz), associated with cyclic variation of heart rate due to 

sleep-disordered breathing [9]. For this study, a “sleep 

apnea” peak was not considered abnormal. 

 Figure 2 shows abnormal FFTs.  In contrast to 

those in Figure 1, plots are irregular and disorganized 

and, in some, the distinct 1/f distribution of spectral 

power described above is not seen.  Significant power is 

often seen beyond the HF band (>0.04 Hz).  Highly 

abnormal FFTs, especially those in Figure 2c-f, are 

readily and unambiguously identifiable by any observer. 

 

 
Figure 1. Examples of normal FFTs 

2.5. Characterization of Poincaré plots 

Normal Poincaré plots for the same subjects and time 

periods as in Figure 1 are in Figure 3.  Poincaré plots are 

a graphical representative of the change in heart period 

from one beat to the next. Normal-looking 1-hour 

Poincaré plots of NN intervals were ellipsoid or 

sometimes mildly comet-shaped, with few data points 

outside the main figure. 

 
Figure 2. Normal Poincaré plots for the same subjects 

seen in Figure 1. 

 
Figure 3.  Examples of borderline (2a,b) and clearly 

abdominal (2c,d,e,f) FFTs 
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Highly abnormal Poincaré plots for the hours seen in 

Figure 2 are shown in Figure 4.  Points on these plots are 

far more scattered than in normal plots with patterns 

ranging from a clearly visible ellipsoid pattern with many 

points outside it (Figure 4a) to plots with a nearly 

random-looking distribution of points (Figure 4f). 

 
Figure 4.  Abnormal Poincaré for the same subjects 

and periods as Figure 2. 

 2.6. Categorization of hourly plots 

For each subject, both hourly plots and HRV values 

were examined and coded as normal (0), borderline (0.5) 

or abnormal (1). Based on ROC curves in a subset of the 

data, we a priori defined “possibly-abnormal” values as: 

DFA1 <0.85, DFA2<1.00, and ICC<0.85. Hours with all 

values above these values were coded as normal if plots 

appeared to be normal. An hour coded abnormal had 

abnormal-looking plots and values for at least one index 

below the possibly-abnormal cutpoint. If there was a 

discrepancy between the plots and HRV values, i.e. 

numbers all within normal limits, but the plot had some 

abnormal features, that hour was coded as borderline. 

Often, such plots were at the boundary between hours 

with clearly abnormal and hours with normal plots.  

Similarly, if the plot appeared normal, but ∃2 HRV values 

were abnormal, that hour was coded as borderline.  

 Most hours could clearly be categorized, but 

there were exceptions.  A very few plots had normal-

looking patterns with very low values for one HRV index.  

Those normal-looking plots with DFA1 or ICC (<0.70) 

were labeled as borderline, but, because we had 

previously observed low DFA2 during normal stage 2 

sleep, values for DFA2 <0.85 during the nighttime or 

during naps were considered normal. 

2.7. Calculation of abnormality scores 

After each hour had been characterized, the scores 

were added.  The abnormality score (ABN, 0-100%) was 

the percentage (sum/number of hours available). 

2.8. Abnormality score cutpoint for 

increased HRV 

Short-term, beat-to-beat HRV would be the most 

affected by increased non-respiratory sinus arrhythmia.  

Therefore, short-term HRV by 5
th

 %ile of ABN was 

plotted, and a cutpoint for ABN associated with markedly 

increased short-term HRV identified. 

2.9. Statistical analyses 

To determine which HRV indices are affected by 

increased ABN, time and frequency domain and non-

linear HRV were compared, using t-tests, for ABN ∃ and 

< the cutpoint for increased short-term HRV.  Age and 

gender were compared by group using Chi-Square 

analysis.  Univariate and multivariate relationship 

between ABN and mortality was tested by Cox 

Regression analysis.  Statistical significance was set at 

p<0.05.  Software was SPSS 11.0 (SPSS, Chicago, IL). 

3. Results 

Subjects were 70.7 ± 4.5 yrs (range 65-86), 155 M, 

135 F. Of 290 subjects, 7 were excluded: 5 with atrial 

fibrillation or a pacemaker and 2 with a rhythm too 

irregular for reliable HRV analysis.  N=13 subjects with 

<18 eligible hours of data and were also excluded.  After 

7 years, 63 eligible subjects had died. Subjects had 5815 

out of a possible 6816 analyzable hours (85%). Of these, 

64.4% were coded normal, 14.5% borderline and 21.1% 

abnormal.   

3.1. HRV and abnormality scores 

Figure 5 is a plot of short-term HRV, in this case high 

frequency power (HF), vs. ABN. As can be seen, there is 

a clear increase in HF at ∃ the 16
th

 percentile bar (ABN 

between 57 and 62%).  Similar results were found for 

other short-term HRV indices: rMSSD (root mean 

squared successive differences), pNN50 (percent of NNs 

>ms different from prior NN) and pNN6.25% (percent of 

NNs >6.25% of local average NN >than prior NN).  

N=67 subjects had ABN above the cutpoint. Table 1 

compares time and frequency domain HRV values for 

subjects ∃ vs. < the cutpoint.  As can be seen, AVNN 

(average of NN intervals) and SDNN (standard deviation 

of NN intervals) were not different between groups. In 

the frequency domain, ln VLF (very low frequency 

power) was not different, but both the low (LF)/HF ratio 

and normalized LF power were significantly different in 
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the groups with higher and lower ABN. 

Figure 5. High frequency power for each 5% of 

abnormality score 

 

Table 1.  Comparison of HRV for Subjects Above and 

Below Cutpoint for Increased Short-Term HRV. 

 Above Below p-value 

AVNN (ms) 840 ± 129 819  ± 97 0.156 

SDNN (ms) 118 ± 42 125 ± 33 0.121 

pNN50 (%) 12.6± 10.9 3.7± 3.7 <0.001 

Ln VLF Power 6.81 ± 0.82 6.88 ± 0.04 0.501 

LF/HF ratio 2.5 ± 1.7 4.7 ± 0.2 <0.001 

NormalizedLF 39.2 ± 9.1 48.0  ± 0.5 <0.001 

3.2. Mortality and Abnormality 

Subjects in the higher group of ABN were not different 

in age (71 ± 5 yrs higher vs. 71 ± 4 yrs), nor more likely 

to be female (20% females for higher, 22% females, 

p=0.67). The association of ABN and mortality was 

significant, with higher ABN associated with increased 

risk of death (HR=1.009 (95%CI=1.001-1.017, p=0.019). 

Being in the higher group of ABN was significantly 

associated with increased risk of mortality (p=0.04). 

3.3. Discussion 

Abnormal FFT and Poincaré plots are not exceptional 

among older adults. Increased ABN was associated with 

increased mortality without concomitant decreases in the 

traditional HRV, like SDNN, used for risk stratification. 

Increased HRV may reflect better cardiac autonomic 

function, among some, but not all, subjects in certain 

populations. Results help explain why short-term indices 

of HRV, such as pNN50 and HF power, often do not 

differ between healthy and cardiac patients or between 

survivors and non-survivors in post-MI studies [10]. In 

addition, results help explain why non-linear HRV has 

been superior to traditional HRV for risk stratification in 

some studies.  While the methodology in this exploratory 

study was semi-quantitative and does not represent the 

development of a new method for risk stratification, 

results suggest that the development of more 

sophisticated tools to account for abnormal heart rate 

patterns would potentially improve HRV-based risk 

stratification. 

Limitations include the categorization of abnormal 

plots, independent of the degree of abnormality.  Also, it 

is not known whether one hour blocks of time are 

optimal. Additional techniques for quantifying abnormal 

HRV and/or for filtering it out of the recording might 

improve risk stratification. 
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