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Abstract

This paper presents a post processing strategy for my-
ocardial velocity fields obtained by phase contrast mag-
netic resonance imaging. Such data can be used to track
cardiac motion and to calculate strain. The method com-
bines data regularization with optical flow estimation to
overcome the partial volume effect in the image acquisi-
tion. Validation is performed both in vitro and in vivo and
it is shown that the method improves the accuracy of car-
diac motion tracking.

1. Introduction

Non-invasive quantitative assessment of regional my-
ocardial function is a clinically important task, as subjec-
tive assessment of regional wall motion may suffer from
poor intra- and inter-observer agreement. Phase contrast
magnetic resonance imaging (MRI) provides time resolved
velocity maps of the heart as well as anatomy images. Such
data can be used to track myocardial motion and to calcu-
late strain and strain—rate [1].

In order to obtain reliable estimates of myocardial mo-
tion and strain, post processing of the measured velocity
maps is needed to reduce the effect of measurement noise
and image artifacts. Spatial regularization of phase con-
trast MRI has not been extensively studied. A 3D regular-
ization strategy by divergence minimization has been pre-
sented earlier [2], and a 1D strategy by a global smoothness
constraint is reported in the literature [3]. In the 2D case,
regularization has been performed by projecting the mea-
sured velocity field onto piecewise linear functions [4] [5].

In this paper we present a post processing method that
uses both velocity maps and anatomy images as well as
fundamental properties of MRI image acquisition. This
method is validated both in vitro and in vivo by comparison
to MRI grid tagging.
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2. Methods

2.1. A combined data regularization — op-

tical flow estimation framework

The post processing strategy is based on two important
properties of MRI image acquisition;

« The measurement error in the velocity maps is propor-
tional to signal intensity in the anatomy images.

o The received signal from the interfaces between different
media will be a mixture of signals, known as the partial
volume effect. Therefore the velocity data may be corrupt
in such areas.

Optical flow can be defined as the deformation field that
warps an image to a subsequent one. Due to the aperture
problem, optical flow can only be reliably estimated in ar-
eas with sufficient image intensity structure [6]. Thus, it
can be used to reduce the partial volume effect as the im-
age gradient is often large on interfaces between different
media.

Some notations and definitions are needed in the follow-
ing. Let the image domain be denoted by Q = [0, M| x
[0,N] ¢ R2. Let Z2 be the sampled plane, with grid
pointst = (4,7), 1,5 € ZandletQ, = QNZ2. Let I,(r) €
[0, 1] be the anatomy image at time ¢t = [0,1,...,7]. We
will evaluate I; on Q) by interpolation on €. If f is a func-
tion on R2, let f, denote its sampling to Z2. Let f x g
and f, * g, denote continuous and discrete convolutions,
respectively, and let f5 - g5 denote componentwise product
of fs and gs. Let v;(r) be the measured velocity field at
time ¢. Define a coefficient function as

[M/As] IN/Ay ]
1Tl = c(r) -
i=1

o(r — (i8q; jA)),
j=1

where ¢ is the Dirac delta, A, and A, are integers and c(r)
takes real values. Denote by u;(r) the regularized velocity
field sought for. Let g(r) be a smoothing kernel. Claiming
smoothness and that constant sampled velocity field should

Computers in Cardiology 2005;32:33-36.



stay constant after interpolation, u,(r) is represented by
uy(r) = N(r) - (Il * g(r)),

where convolution is applied separately to each component
of the vector. The normalization function N (r) is defined

as
1

- I(r) * g(r)’
where IIT is the first component of ITI, evaluated with ¢ =
1. It is required that the support of the smoothing kernel is
large enough so that ITI x g > 0 is satisfied for all r which
establishes a condition on A, and A, once the kernel is
chosen. It is also required that A, and A, are chosen to be
greater than 1, otherwise any function sampled on ), can
be represented by u(r).

Data regularization and optical flow estimation is per-
formed by finding the function ¢ that minimizes the func-
tional

E(ug) = Y (ui(r) = vi(r))* - Wgpa(r)+
reQ,
(L1 (r + 1) = L(r)* - Wopgicar (v),
where Wy,¢, and Woptical are positive weight functions
to be defined later.

The minimum can be found iteratively by a gradient de-
scent equation

N(r)

¢ ) = ¢ W T (N - (0 = vy) - Wgat

(Le41(r +u (k)) — Ii(r)) - VI (r) - Woptical)) *9

where k serves as the iteration counter. The approximation
I(r+u) = I(r)+VI-uwas used when deriving the above
equation. This scheme is straightforward to implement as
it only uses convolutions and image interpolation. We will
let g(r) be a truncated Gaussian kernel with standard devi-
ation 0.

The weight functions used above were constructed with
the two image acquisition properties in mind. The func-
tions were normalized so that Wy, € [0, 1] and we de-
fine Woptical = 1 — Wyata- The data attachment weight

function was defined as
I(r)

Waata™) = 1 3w 1P

where A > 0 is a tuning parameter. Thus, optical flow esti-
mation is used in areas with low signal intensity, even if it
is a homogenous area. This will imply that the regularized
velocity field will be close to zero in such areas.

The post processing method was implemented in MAT-
LAB (Mathworks).
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2.2. Image acquisition

The post processing scheme was validated using both in
vitro and in vivo data.

The phantom consisted of an Agarose-gel, castin a plas-
tic container. The size of the phantom was 8x8x5 cm?,
and the approximate T;-value of the gel was 800 ms. In
the scanner, the phantom was placed on a small plastic cart
which restricted the motion a rigid translation. Forward-
backward motion of the phantom was accomplished by
connecting the front of the cart to a rotating disc, using
a thin wire. Each turn of the disc pulled the cart with the
phantom forward, while a rubber band returned it to the
original position. The phantom is shown in Figure 1. The
amplitude of the phantom motion was 19 mm and the pe-
riod of the motion was 1.07 s.

Figure 1. Image showing the phantom on the moving cart
and the wire connection to the rotating disc. The angular
velocity of the disc is controlled by a signal generator.

Data from a total of n = 10 human subjects was ac-
quired in long axis slices, after informed consent.

Velocity data was acquired using a 1.5 T Gyroscan In-
tera Scanner (Philips Medical Systems). Spatial resolu-
tion was 1.2x1.2 mm in vitro and 1.5x1.5 mm in vivo
with a slice thickness of 8 mm and temporal resolution of
25-35 frames/heartbeat. Typical imaging parameters were
TR=24 ms, TE=5.3 ms, v.,.=0.30 m/s, flip angle 20°, ma-
trix size 256x 192 pixels and FOV = 400 mm x 300 mm.
In the in vivo case saturation bands were used to reduce the
signal from blood [7]. Retrospective ECG gating was used
when reconstructing the images.

In the in vivo case, saturation grid tag images were ac-
quired in the same imaging plane. Typical parameters were
TR=3.8 ms, TE=1.8 ms, , flip angle = 15°, saturation tag
gap = 7 mm, matrix size = 256x192 pixels, FOV 400
mmx 300 mm, temporal resolution of 12 frames/heartbeat.



2.3. Data analysis

The performance of the post processing scheme was val-
idated by calculating the displacement field by temporal in-
tegration of the velocity field and comparing it to the true
displacement field. In the in vivo case the true displace-
ment field was only sparsely estimated by manual tracking
of grid tag intersections. The root mean square error was
used in the comparison. Three different settings were used
in the experiment; one with no regularization at all, one
with W, = 1 and Woptica1=0 and finally one with the
weight functions described above.

The grid spacing was set to 3 pixels and the discrete
Gaussian kernel had a standard deviation of 3. The pa-
rameter A in the weight functions was experimentally set
to 10 and a maximum of 100 iterations was used.

3. Results

Figure 2 shows the error when tracking the phantom mo-
tion using the three different settings.

RMS error (pixels)

. . . . . . .
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time (fraction of motion period)

Figure 2. RMS error for motion tracking with no regu-
larization (solid), regularization of velocity measurements
only (dashed) and using combined data regularization —
optical flow estimation scheme (dotted).

Figure 3 shows the results of the in vivo study as a box-
plot where the mean error during the cardiac cycle was
used for comparison. The differences between the three
settings are statistically significant (p < 0.005) based on a
paired t-test.

A qualitative evaluation is shown in Figure 4 where the
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Figure 3. Boxplot for motion tracking in the in vivo case
using three different settings.

displacement field at end systole is shown with and without
regularization.

4. Discussion and conclusion

We have constructed and validated a post processing
scheme for 2D phase contrast MRI that takes both the
measured velocity field and the anatomy images into ac-
count. The method is based on fundamental properties of
phase contrast image acquisition and assumes that the my-
ocardial velocity field is smooth. The method improved
the accuracy in motion tracking in all cases, both in vitro
and in vivo. It was also shown that regularization using
only velocity data improved the result, but not as much
as the combined regularization — optical flow estimation
scheme. This suggests that all information acquired using
phase contrast MRI should be taken into account in order
to regularize the data.

An advantage of the proposed method is that no image
segmentation is needed. Segmentation of phase contrast
MRI is time consuming and difficult even if manual seg-
mentation is used.

Validation in the in vivo case was made by comparison
to saturation grid tag images which were manually ana-
lyzed. This will only give a sparse estimation of the dis-
placement field which will be somewhat unreliable at the
end of the cardiac cycle due to tag fading. It is also difficult
to track tag intersections close to the epi- and endocardium
which may cause the effect of the optical flow estimation
to be less pronounced.
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Figure 4. Myocardial displacement field at end systole us-
ing no regularization (top) and with combined regulariza-
tion — optical flow estimation (bottom). Note especially
the differences at the epicardium.

The method extends naturally to 3D which may be used
for research purposes but not in clinical routine due to the
long acquisition time of such measurements.

We conclude that the constructed post processing
scheme improves the accuracy of cardiac motion tracking.
The lack of user interaction will increase the potential for
clinical use of 2D phase contrast MRI.
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