Robust and Efficient Location of T-Wave Ends in Electrocardiogram

Q Zhang!, A Tllanes Manriquez®, C Medigue?, Y Papelier®, M Sorine?

'INRIA-IRISA, Rennes, France
2INRIA Rocquencourt, Le Chesnay, France
3Hopital Antoine-Béclere, Clamart, France

Abstract

A new algorithm is proposed in this paper for T-wave
end location in electrocardiogram (ECG). It mainly con-
sists of the computation of an indicator related to the area
covered by the T-wave curve and delimited in a special
manner. Based on simple assumptions, essentially on the
concavity of the T-wave form, it is proved that the maxi-
mum of the computed indicator inside each cardiac cycle
coincides with the T-wave end. The algorithm is robust
to measurement noise, to wave form morphological vari-
ations and to baseline wander. It is also computationally
very simple: the main computation can be implemented as
a simple finite impulse response (FIR) filter.

1. Introduction

Automatic processing of electrocardiogram (ECG) has
been one of the earliest applications of modern digital com-
puters. In this vast field, automatic detection of wave forms
in ECG signals is still an active research topic, as demon-
strated by recent publications [1, 2, 3, 4]. Because of the
great morphological variations in ECG signals, it is diffi-
cult to design automatic and widely applicable algorithms.
This difficulty partly explains the continuous efforts made
by researchers on ECG signal processing.

It is widely acknowledged that T-wave end location is
the most difficult one among wave form boundary location
problems, due to the slow transition in the signal around
each T-wave end, eventually corrupted by noise. The pur-
pose of this paper is to propose a new algorithm for the lo-
cation of T-wave end. Its most remarkable difference from
existing algorithms is its consistency proof based on sim-
ple assumptions, essentially the concavity of the T-wave
form. Moreover, it has the following advantages: (a) it
is robust to measurement noise, since the computation in
the algorithm mainly consists of an integration operation;
(b) it is robust to wave form morphological variations and
to baseline wander, since the consistency of the algorithm
is essentially based on the assumption of T-wave concav-
ity, and no threshold is needed to determine T-wave end
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location; (c) it is computationally very simple: the main
computation is an integration operation over a sliding win-
dow and can be implemented as a simple finite impulse
response (FIR) filter.

When evaluated with manually annotated ECG signals
of the QT database [5] available on the PhysioNet web
site [6], the proposed algorithm outperforms the other
known algorithms evaluated with the same data base, ac-
cording to the most recent available publications up to our
knowledge.

The paper is organized as follows. The proposed algo-
rithm is first presented for continuous time signals in Sec-
tion 2, then for discrete time signals in Section 3. The algo-
rithm performance is then evaluated in Section 4 with the
PhysioNet QT database. Finally, some concluding remarks
are drawn in Section 5.

2. Algorithm in continuous time

For the convenience of presentation, the ECG signal is
considered in this section as a continuous function of the
time ¢, denote by s(t). Based on QRS-complex detection
(this task can be accomplished with any well established
QRS detection method; see, e.g., [1]), for each cardiac cy-
cle, a interval [t,, 3] is roughly delimited so that the T-
wave end is inside this interval, with no overlap with the
other wave forms (QRS and P). The following presenta-
tion assumes that such an interval is already chosen for
each cardiac cycle.

In this paper, the time instants corresponding to the be-
ginning and to the end of a T-wave are respectively denoted
by t1 and ¢5. The T-wave length, denoted by L = t1 — to,
is generally an unknown value.

The proposed algorithm mainly consists of the computa-
tion of an indicator A(¢) which reaches its maximum value
when ¢ = 5. It is computed mainly through an integration
operation in a sliding window. The window size W should
be chosen such that 0 < W < L. Ttis possible to choose
such a value with some rough knowledge on L. At each
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(a)
Figure 1. Tllustration of A(t) by the grey areas

time instant ¢, define the indicator

t
AW = [ str) — stlar M
W
which can be understood as the area in the interval [t—W, t]
under the signal s(t), but above the horizontal line crossing
the point (¢, s(t)), as illustrated in Figure 1(a).
Let us introduce some other useful notations

top = arg terﬁ?,)tz] s(t) (2)
h(t) = s(t = W) — s(t) 3)
Pnax (t2) = o t2][s(t) — s(t2)] )

and make the follwing assumptions.

Assumption I1: A T-wave is a differentiable concave
function of the time in the interval [t1, t2]. It is followed by
a straight-line in the interval [t2, t;] (a piece of the baseline,
not necessarily horizontal). O

Remark 1: Despite the approximative nature of this as-
sumption, the resulting algorithm proposed in this paper
produces accurate results when evaluated with the Phys-
ioNet QT database, as shown in Section 4.

Assumption 2: 1If the straight-line segment of s(¢) in the
interval [to, 3] has a negative slope K, then it is weak
enough such that | K| < h(t)/W for any ¢ € [ta, tp]. O

Assumption 3: The segment of the signal in the inter-
val [t, — W, t1] preceding the T-wave is not necessarily a
straight-line, but is upper bounded such that

5(t) < s(tiwp) ()
and satisfies the Lipschitz condition
Pmax (t

st~ s(r) < My )

forany t,7 € [to—W, t1]. O
Now the property of the indicator A(t) can be stated.
Proposition 1: Under Assumptions 1, 2 and 3, the indi-
cator A(t) defined in (1) satisfies the property
to = Alt
2 g, A
O
A detailed proof of this property is presented in [7] and
omitted here due to space limitation. Nevertheless, let us
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continuous time
discrete time ke ky ko

Table 1. Notation correspondence between continuous
time and discrete time

ta tp 2

give an intuitive explaination of this property. Consider
the particular case illustrated in Figure 1. From the posi-
tion t = to as illustrated in Figure 1(b), when the window
is moved to the right side, part of the window is covering
the baseline instead of the T-wave, then A(t) decreases.
When the window is moved to the left side, the bottom
line of the area moves up with the value of s(¢), then the
area A(t) also decreases. Therefore, intuitively, in the il-
lustrated particular case the T-wave end can be located by
looking for the time ¢ maximizing A(t). See [7] for a more
rigorous proof covering different forms of the ECG signal
segments preceding and following T-waves.

3. Algorithm in discrete time

In practice, ECG signals are typically sampled at dis-
crete time instants before being processed with a digital
computer. Assume that the signal is sampled at a constant
period A, and with s;; = s(kA) being the k-th sampled
signal value. Then the ECG signal becomes a sequence of
values s with £ = 1,2, .... Accordingly, the definition of
A(t) is reformulated in discrete time as

k

>

j=k—w+1

Ay (85— k)

where w is the sliding window size in discrete time. In
order to reduce of the effect of measurement noise, in the
above formula it is better to replace s; by Si, the mean
value of the signal in a small window around k.

Some other notations already introduced in continuous
time are also translated into discrete time, as summarized
in Table 1.

A QRS-complex detection algorithm is first applied to
detect R-peaks, with R; denoting the ¢-th detected R-peak
(discrete time) instant. Inside each detected RR interval,
two discrete time instants k, and k; are chosen to confine
the T-wave end search. Then for each instant k between k,,
and kp, the value of Ay is computed and the T-wave end is
located at the value of & maximizing Aj.

Up to now in this paper, only positive T-waves have been
considered. Following [3], T-wave morphologies can be
classified as positive, negative, biphasic (positive-negative
or negative-positive), ascending only, and descending only.

For negative T-waves, the same algorithm can be applied
to —s(¢) instead of s(t), or equivalently, the minimum of
A(t) is searched for instead of its maximum. The other
morphologies can be dealt with similarly.



Since the T-wave morphology is a priori not known, the
following simple rule is adopted. Search for the instants
k' and k" respectively maximizing and minimizing Ag.
If Ay and Ay have comparable absolute values (decided
based on a threshold value), then the T-wave is considered
as biphasic, and the latest of the two instants &’ and k" is
taken as the location of the T-wave end. Otherwise, the
largest absolute value | Ay | or | Ay~ | corresponds to the T-
wave end.

The complete algorithm in descrete time is summarized
in the following.

Algorithm summary.

1. Choose the sliding window size w and the smoothing
window size p << w. Choose also a threshold A > 1 for
T-wave morphology classification.

2. Read two successively detected R-peak instants R; and
Ri—l—l-

3. Choose the values of k,, k, between R; and R, to
confine the T-wave end search.

4. For each instant k = ko, ks + 1,.. ., ky, compute
1 k+p
S = Z Sj
2 1
Pt j=k—p
k
A = Z (Sj — gk)
j=k—w+1
5. Find
k' =arg max A
ko <k<kp
k" =arg min A
ko <k<kp
6. If A
1 ”
- < <A
A |Ak//‘

then the T-wave end in the current RR interval is located at
ko = max(k’, k")

otherwise,

ko = arg max

| Ag|
ke{k' .k}

7. Increase ¢ by one and go back to step 2. O

Remark 2: The main part of this algorithm, the compu-
tation of Ay, is in fact a linear combination of the signal
values from si_y41 10 Sg4p. It can thus be simply imple-
mented as a finite impulse response (FIR) filter. O

The choice of kq, kp, in each RR interval has an impor-
tant influence on the result of T-wave end detection. They
should define an interval large enough to contain the T-
wave end, and small enough in order to avoid overlap with
the other wave forms. As an example, the rule for choosing
kq, ky when the algorithm is applied to the PhysioNet QT
database will be given in the next section.
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4. Evaluation with the PhysioNet QT database

The PhysioNet QT database [5] has been built by re-
searchers to serve as a reference for the validation and
comparison of ECG processing algorithms. The signals in
this database have been manually annotated by cardiologist
experts for various events. Only the T-wave end annota-
tions are used in this paper. In 105 records, a total of 3542
T-wave ends have been annotated by one cardiologist, and
402 T-wave ends in 11 records have been annotated by an-
other cardiologist. Each record consists of two leads of 15
minutes ECG signals sampled at 250 Hz.

The signals are first filtered to reduce baseline wander
before the application of the proposed detection algorithm.
For simplicity, the Fast Fourier Transform (FFT) of each
signal is first computed and then the frequency components
below 0.5 Hz are truncated before the inverse FFT is com-
puted.

The following parameters have been used for the pro-
cessing of the QT database which is sampled at 250 Hz.

The sliding window w = 32, the smoothing window
p = 4, the threshold for T-wave morphology test A = 6.
Denote RR; = R;4+1 — R;, the search interval is chosen as

 [Ri+|0.15RR,] +37 if RR; <220
“ \R;+ 70 if RR; > 220
fr — R; + |—07RRZ-| -9 if RR; < 220
* 7 )R +[0.2RR;] + 101 if RR; > 220

where |z | means the largest integer smaller than or equal
to z, and [x] means the smallest integer greater than or
equal to z.

In order to evaluate the accuracy of the proposed algo-
rithm, the mean and the standard deviation (STD) of the
location errors (the difference between the automatically
detected T-wave ends and the manually annotated T-wave
ends) are computed.

Up to our knowledge, the results of 4 different detec-
tion algorithms evaluated with the PhysioNet QT database
have been published [8], [9], [3] and [4]. For the purpose of
comparison, the results of the first 3 algorithms are recalled
in Table 2. It has not been possible to compare with the re-
sults of [4], because only 3000 annotated T-wave ends (out
of 3542 available) were used for the results reported in this
publication without indicating how these 3000 annotations
were selected, and the mean value of the detection errors is
not reported.

In Table 2, the first row (of numerical values) is the re-
sults for all the signals annotated by cardiologist 1, the
other two rows are the results for the 11 records annotated
by both cardiologists. Column 1 is the reference annota-
tion used for error computation, column 2 is the number
of records, column 3 is the number of annotated T-wave



num. of | num. of this paper WT LPD TU
Reference | records annot. | mean STD | mean STD | mean STD | mean STD
Cardio. 1 105 3542 031 1743 | -1.6 18.1 | 13.5 27.0 0.8 30.3
Cardio. 1 11 487 -747 1718 | 9.7 18.1 — - — —
Cardio. 2 11 402 -747 17.51 | -10.8 20.0 — — — —

Table 2. Evaluation of algorithms on the QT database. The first row (of numerical values) is the results for all the signals
annotated by cardiologist 1, the other two rows are the results for the 11 records annotated by both cardiologists. Column 1
is the reference annotation used for error computation, column 2 is the number of records, column 3 is the number of
annotated T-wave ends, column 4 is the results (mean and standard deviation (STD) of detection errors) of the proposed
method, the following columns are the results of the algorithms WT [3], LPD [8] and TU [9]. The time unit is millisecond.

The missing values are not reported in the original publication.

ends, column 4 is the results of the proposed method, the
following columns are the results of the algorithms WT [3],
LPD [8] and TU [9]. The abbreviations for the names
of these algorithms follow those of [3]. The time unit is
millisecond. The numerical values for the algorithms WT,
LPD, TU come from the publication [3].

The computation of the mean and the standard deviation
of errors presented in Table 2 follows the method of [3].
Some variant evaluation methods and the corresponding
numerical results are presented in [7].

5. Conclusion

A new algorithm for T-wave end location has been pre-
sented based on an indicator signal with mathematically
proved consistency. It is robust to measurement noise,
since its computation mainly consists of an integration op-
eration. It is robust to wave form morphological variations
and to baseline wander, since the consistency of the al-
gorithm is essentially based on the assumption of T-wave
concavity, and the location of T-wave does not require any
threshold. The computation burden of the algorithm is very
low: its main computation can be implemented as a simple
FIR filter.

Satisfactory results have been obtained when this new
algorithm is evaluated on the PhysioNet QT database. In
terms of error mean value and standard deviation, it out-
performs the other algorithms evaluated on the same data
base, according to recent publications.

By examining the results of the algorithm, it has been
observed that large errors are mainly caused by incorrect
morphological classification. In order to further improve
the results, it is important to develop more accurate and
robust methods for morphological classification.
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