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Abstract

Continuous physiological monitoring is often the best
available tool for detecting and treating asymptomatic, in-
termittent pathologies like Atrial Fibrillation. A particu-
larly effective algorithm is based on the variance of inter-
beat intervals. This algorithms relies on the detection of
the QRS complex and is thus fairly robust to noise. Unfor-
tunately, we find that the algorithm is very susceptible to
lost data and can quickly degrade even when small parts
of the ECG stream are missing. For home-based environ-
ments with small devices and wireless data transmission,
data loss and noise are inevitable and as such an algo-
rithm that is both robust to noise and lost data becomes
necessary. In this paper we present a new Atrial Fibril-
lation detection algorithm that has the above stated de-
sired qualities. We have run the original and the modi-
fied algorithms on a collection of patients from the Phy-
sionet database exhibiting Atrial Fibrillation. Even with
data loss as little as 10% the original algorithm degrades
rapidly and its output is only 2-3% similar to the no-loss
case. The loss-conscious algorithm continues to provide
output that is more than 90% similar to the no-loss case
even for data loss rates as high as 30%.

1. Introduction

The cost of health care has been increasing at much
higher rates than overall economic growth. It currently
stands at 15% of GDP for the United States and at similar
levels for other industrialized countries. Furthermore the
graying of populations in the developed world promises to
exacerbate current trends. As such, solutions are needed
so we can continue to enjoy our current level of health
coverage without bankrupting the system. Fortunately
more than 80% of health care spending is associated with
the relatively small percentage of the patient population
(less than 20%) that suffers from certain chronic diseases.
Chronic disease management lends itself nicely to remote
care, thus appropriate technology developments offer the
dual promise of reduced costs along with improved patient
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Figure 1. ECG recording of patient in Atrial Fibrillation.

outcomes. One of the major candidates for at-home care is
that of chronic cardiac arrhythmias, and in particular atrial
fibrillation.

Atrial fibrillation (AF) is a cardiac arrhythmia that
causes the atria of the heart to flutter, leading to ineffi-
cient blood circulation between the atria and ventricles,
and ultimately to blood clots and strokes. Unfortunately
detection of the pathology can be difficult since it can be
asymptomatic until it is too late. A typical ECG reading
for a patient in Atrial Fibrillation can be seen in Figure
1. Atrial Fibrillation is reported to be responsible for 15-
20% of all strokes[ 1] and is predicted to be associated with
over 3 million hospitalizations by 2025[2]. Frequent ECG
monitoring using Holter monitors can detect the condition
but this approach is far too costly and cumbersome to be
practical.

An exciting alternative is small, low-cost sensors with
relatively long battery lives and wireless transmission ca-
pabilities. One of the disadvantages of these devices is
higher levels of noise, and possibly lost data segments due
to transmission and other errors.

To cope with the signals associated with such devices,
AF detection algorithms need to be robust to morphol-
ogy variations and high levels noise. One such algorithm
is presented by Logan and Healey [3] and is based on
the morphology independent, open-source QRS detector
wqrs [4] and an analysis of R-R interval variance. Unfor-
tunately this algorithm and others based on R-R interval
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Figure 2. Original AF detection algorithm diagram.

statistics are highly sensitive to data loss. When segments
of the ECG stream are missing, the outcome of the algo-
rithm diverges significantly from the correct answer with
results being only 2-3% similar to the correct answer.

In this paper we present an amended algorithm that
takes data loss into account and reacts appropriately when
data segments are missing. This improved algorithm con-
tinues to provide correct answers (more than 90% similar
to lossless data analysis) even when data loss is as high as
30% of the total.

The rest of this paper is organized as follows. We
present our algorithm in detail in Section 2. We then
demonstrate its performance on data from the Physionet
Database [5] in Section 3. In Section 4 we discuss the gen-
eral principles behind our algorithmic changes and exam-
ine the kinds of loss patterns for which they are effective.
We present related work in Section 5 and our conclusions
in Section 6.

2, Gap conscious AF detection algorithm

Figure 2 shows a flow diagram of the AF detection
algorithm used by our system. Our approach computes
the variance of R-R intervals then applies a threshold and
smoothing to this in order to detect AF.

In order to account for gaps we make changes to sev-
eral of the modules. Figure 3 shows a flow diagram of
the gap conscious algorithm. The first difference between
this algorithm and the original approach is the computa-
tion of time intervals where data is lost. This information
is then used by component that computes R-R intervals.
This component accepts both streams of data and exam-
ines whether the distance between successive QRS com-
plexes overlaps with data gaps. If the overlap exceeds 50%
of the interval distance then the algorithm assumes that
this interval is compromised due to data loss and drops it
from the stream of intervals fed to the downstream com-
ponents. The 50% overlap threshold was selected empir-
ically. Other thresholds may work equally well. One in-
teresting problem that needs to be addressed during this
calculation is the possibility that an R-R interval may span
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Figure 3. Gap conscious AF detection algorithm diagram.

multiple gaps. Thus the relevant metric is the sum of the
overlaps between the interval and all the gaps with which
it intersects.

Once the R-R intervals have been produced the next step
is to compute the variance of those intervals over an appro-
priate time window. However, using a time window for the
variance computation can result in significant divergence
from the no-data-loss case. The reason is that in the pres-
ence of data loss, a time window may contain too few R-R
intervals for the variance computation to be stable. Using
a very large time window can address this but at the ex-
pense of suboptimal computation in the no-data-loss case.
We have chosen to express the window in terms of the
actual R-R intervals computed rather than time and have
seen that this approach works well in practice.

Finally the smoothing component should take into ac-
count large gaps and mark those as areas of uncertainty
rather than lumping them with the other two signal states
(i.e. AF or normal sinus rhythm). Our current implemen-
tation does not do this since we knew that our patterns of
loss would never result in excessively large data gaps.

3. Performance results

We have evaluated both the original and gap-conscious
AF detection algorithms described in [3] and section 2
on a set of 23 patients from the MIT-BIH AF database
(AFDB) [5]. We use two metrics to present our results.
The first is the similarity of the results when analyzing
the lossy data stream relative to the results of the origi-
nal algorithm on the clean data stream. The second metric
is the similarity of the results when analyzing the lossy
data stream relative to the ground truth as reported in the
MIT-BIH AF database. In the interest of space we show
results only for the 10%, 20%, and 30% data loss cases
even though our algorithm continues to perform well for
loss rates as high as 50%.

We define percent similarity in the following way. Let
P be the time period covered by the signal and over which
we run our analysis. Let O; be the afib intervals within
the period P as computed by the original algorithm and
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Figure 4. Percent similarity of the unmodified R-R algo-
rithm and the modified Gaps algorithm when compared to
the no-loss case.

assuming no data loss. Let N; be the AF intervals within
the period P computed by any algorithm when there is
data loss. Then the similarity percent between the no-loss
and lossy analysis is expressed by the formula:

(P —U0:) (P = UNy)) + (UO; (|UN:)) —
(P =U0:) [JUN) + (UO; [)(P — UN)))

Figures 4 and 5 show the performance of our improved
algorithm relative to the original algorithm for data loss
rates of 10%, 20%, and 30%. The left plot shows the per-
formance of the algorithms relative to the original algo-
rithm with no data loss. The right plot shows the perfor-
mance relative to the ground truth as recorded in the MIT-
BIH database. It can be seen that the original R-R algo-
rithm quickly deteriorates even for small amounts of data
loss, with similarity percentages dropping immediately to
under 20% and deteriorating from there. For higher loss
rates, the similarity percentage becomes negative '. Our
modified algorithm has substantially better performance
with similarity percentages staying above 90% when com-
pared to the no-loss original algorithm, and above 85%
when compared to the ground truth.

4, Discussion and loss pattern sensitivity

The intuition behind the gaps algorithm stems from the
observation that loss of a data segment can severely affect
the variance computation. The loss of ECG data around a
QRS complex can result in the complex itself being missed
by the QRS detector [4]. This in turn has the side ef-
fect that the surrounding complexes appear to be further
apart in time than they really are, and the variance com-
putation errs in believing the variance to be much higher

LGiven our definition of similarity percentage it is possible to have neg-
ative similarity if the new detection algorithm introduces false positives
in addition to missing real AF events.
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Figure 5. Percent similarity of the unmodified R-R algo-
rithm and the modified Gaps algorithm when compared to
the ground-truth.

than it really is. As such the original algorithm will find
AF in areas of the signal which experience data loss since
the missing QRS complexes result in higher variance for
the remaining R-R intervals. By eliminating the R-R in-
tervals that overlap with data gaps, and by stabilizing the
variance and smoothing computations by requiring appro-
priate sized windows before they are computed, the gap-
conscious algorithm overcomes the shortcomings of the
original R-R algorithm and continues to yield good results
even as data loss rates increase.

An interesting dimension to the problem of dealing with
data loss has to do with the actual pattern of loss. For ex-
ample a 10% loss rate can happen in a random, regular,
or bursty pattern and each of those would have a different
effect on the analysis algorithm. Our base results assume
that data is lost in a bursty pattern since most ECG devices
would exhibit this kind of loss. Burstiness stems from two
factors. The first is that devices transmit packets of data
rather than individual data samples so the minimum unit
of loss is a packet. The second is that in most network-
ing environments packet loss tends to come in bursts so
it’s usually a sequence of packets that gets lost rather than
individual packets.

Nonetheless, we also looked at the other patterns of
loss in order to determine how our algorithm would fare.
We have discovered that when data loss happens in very
small bursts (i.e. individual values) then both the original
and the gap-conscious algorithm continue to perform quite
well. The explanation for this behavior can be found in the
workings of the QRS detector which can recover from ex-
tremely small segments of loss and still correctly discover
and identify the position of the QRS complex. However,
as the size of the burst increases then both algorithms de-
teriorate.

Loss bursts of between 0.1 and 2 seconds appear to be a
“dead spot” where neither algorithm does well. The intu-
ition behind this is that such loss patterns tend to have the
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worst possible impact on the number of QRS complexes
that can be lost and can also affect the gap-overlap de-
tector. A loss of this magnitude may not satisfy the 50%
overlap criterion but still result in a missing QRS com-
plex and an incorrect variance computation. As loss bursts
get longer (above 2 seconds) the gap-conscious algorithm
improves markedly as the uncertainty in the gap-overlap
detection components is reduced. The original R-R inter-
val algorithm continues to deteriorate as we have seen in
the earlier section since it has no concept of gaps and thus
can not take advantage of the fact that gaps are clearly de-
fined when loss bursts are longer. Despite the existence of
the dead spot we believe that the gap-conscious algorithm
is likely to be highly effective in practice, since most ex-
pected loss patterns for any wireless devices would fall in
the “large burst” category.

5. Related work

To the best of our knowledge, the specific problem ex-
amined in this paper has not received much previous atten-
tion. We expect the improvements shown by our algorithm
would extend to any R-R-based AF detection algorithm.

Our AF detection algorithm is described in [3] and
is loosely based on the R-R algorithm of Moody and
Mark [6]. It is designed to detect AF using a custom sensor
designed for long-term wearability. The ECG signal gen-
erated by this device is non-standard, has changing mor-
phology and contains significant muscle noise. The algo-
rithm uses a morphology independent QRS detector [4]
to determine R-R intervals and detects AF based on R-R
variance.

6. Conclusions

Designing algorithms for the detection of cardiac ar-
rhythmias that are tolerant to data loss appears to be a sig-
nificant but not well covered area of academic research.
The proliferation of physiological sensors and long term
continuous monitoring will result in large amounts of data
that need to be automatically analyzed. It is highly likely
that this data will contain time periods where the signal
will either be overshadowed by noise or outright lost dur-
ing collection and/or transmission.

We have presented a new algorithm for Atrial Fibrilla-
tion detection based on R-R interval variance that is toler-
ant of data loss. Our new algorithm provides answers that
are substantially similar to the analysis of loss-free data
even when loss rates for the input data stream are as high
as 30%.

However, our algorithm is still susceptible to certain
loss patterns. When data loss occurs in segments sizes
between 0.1 and 2 seconds our gap overlap detection per-
forms inadequately and as such the final result of the anal-

ysis deviates substantially from the ground truth. Nonethe-
less, the algorithm is extremely useful since it performs
well for the common case of data loss where data collected
by a device is packetized and transmitted to an analysis
station. Expected patterns of loss in such a situation are
highly likely to be in segments larger than the upper limit
of our susceptibility window. In the future, we would like
to extend our work so as to eliminate our window of vul-
nerability and also to cover the detection of other types of
arrhythmias in lossy data streams.
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