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Abstract

Torsade de points (TDP) is a form of polymorphic ven-

tricular tachycardia. It is associated with alternation of T

wave and prolongation of the QT interval. The primary

objective of this work is to find characteristics of the T

waves before and after TDP using Principal Component

Analysis (PCA). PCA was applied on T wave of 60 nor-

mal 24-hour tapes and 10 TDP 24-hour tapes from dif-

ferent studies recorded during ’Dofetilide’ clinical trials

(Pfizer, Inc.). All signals were first conditioned by eliminat-

ing baseline wander, detecting their significant points and

extracting T waves of each channel into a data matrix. Af-

terwards, for every zero-centred data matrix, a covariance

matrix and its corresponding eigenvalues and eigenvectors

were calculated. Then, every beat is explained in terms

of the eigenvectors delivering scores that characterise in-

dividual T wave. Results showed that Standard deviation

(SD) of PCA scores for TDP patients before TDP syndrome

are clearly higher than in case of healthy subjects.

1. Introduction

Torsade de Pointes (TDP) is a life-threatening arrhyth-

mia closely linked to abnormal cardiac repolarization. The

original name of TDP comes from Frensh language and

means ”twisting of the points”, since QRS complexes wing

up and down around the isoelectric axis periodically and

in a chaotic fashion changing their morphology from beat

to beat. Moreover, it is often followed by sudden cardiac

death. The delay in phase III of the action potential, which

is mediated by the HERG encoding the major repolariz-

ing potassium current Ikr , is the underlying basis for the

rhythm disturbance of TDP. In other words, TDP is charac-

teristic of the congenital long QT syndrome caused by mu-

tations in the HERG gene. The dysrrhythmia is allowed to

emerge because the prolonged period of repolarization and

the inhomogeneity of repolarization time among myocar-

dial fibres. Furthermore, HERG appears to be the main

molecular target for drugs which cause QT prolongation

[1]. Cardiac safety is now a major issue in new drug

development, because there is increasing awareness that

many non-antiarrhythmic drugs can prolong the QT inter-

val and provoke TDP [1]. Although the precise mecha-

nism of torsade de pointes has not been established, recent

in vivo studies [2], prefused wedge studies [3], and clini-

cal observations made with monophasic AP recordings [4]

have presented evidence in support of the hypothesis that

an early afterdepolarization-induced, triggered response

initiates TDP but that the arrhythmia is maintained by a

re-entrant mechanism. They demonstrated an enhanced

propensity of cardiac myocytes to generate early afterde-

polarizations (EADs) in response to factors that prolong

the action potential duration (APD). This proposed mech-

anism has been challenged by another one, which is based

on the association between dispersion of repolarization

(DOR) and TdP, suggesting involvement of reentrant exci-

tation. Because the Iks current density of the midmyocar-

dial cells (M cells) is relatively weak, they are more sensi-

tive to many APD -prolongation conditions than epicardial

and endocardial cells and they can play an important role

in arrhythmias which are dependent on delayed cardiac re-

polarization, such as LQTS. Despite relative normalization

of the M-cell APD on subsequent beats, reentry persisted

as the leading edge of the wavefront propagated into the

recovering tail of the circuit. Such dynamic M-cell APD

adaptation undoubtedly accounted for the rapidly changing

trajectory of the reentrant circuit producing the character-

istic polymorphic ECG morphology of TDP. The presence

of uniform propagation on the epicardium may explain the

appearance of a monomorphic waveform configuration in

certain ECG leads but not others. Taken together, these

findings suggest the existence of a single rotor during TDP

that initially forms in the transmural wall and subsequently

meanders into deeper layers of myocardium [5]. TDP is

associated normally with marked prolongation of QT inter-

val to 600 ms or greater. It is also associated with progres-

sive changes in T-wave morphology and a bizarre shape of

T wave especially after premature beats of long short cycle.

Moreover, T wave alternans (TWA) is very important prog-
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nostic indicator in that it is commonly observed just pre-

ceding episodes of TDP [6]. Inevitably, QTc interval pro-

longation has come to be recognized as a surrogate marker

of the risk of TDP. Although it is the best and the simplest

clinical measure that is available at present, QTc interval

is not a reliable surrogate of TDP [7]. Furthermore, al-

though the concept of QT dispersion is the best known and

most widely investigated, it has also proved to be the least

successful in predicting the risks of drug-induced TDP [7].

Monitor carefully the T wave morphology (TWM) changes

in beat-to-beat manner appears to play a more important

role in access the electrical stability of the ventricles and

in detecting predisposition to TDP. That is, analysing the

beat-to-beat changes and variability in TWM seems to be

a robust precursor to TDP. In this paper, Principal Compo-

nent Analysis (PCA) was applied on T waves of 60 nor-

mal and 10 TDP two-channel tapes from different stud-

ies recorded during Dofetilide clinical trials (Pfizer, Inc.).

First, a new robust Discrete Wavelet Transformation-based

(DWT-based) approach has been devised here to eliminate

the artefacts of baseline wander and low-frequency com-

ponents from the every channel of ECG signals [8]. The

fiducial points, namely QRS complex onset, R peaks and

T wave offset, for all beats in the same channel are then

detected using an accurate ECG delineator [9]. After ex-

tracting QRST complexes (all beats from QRS complex

onset till T-wave offset) from the ECG data set, outliers

and premature beats are excluded from detected beats by

means of Hotelling’s T squared measure and they are not

included in any further analysis. Afterwards, the outlier-

free data were aligned very precisely to their R peaks by

means of the cross-correlation coefficients and underwent

a second-order Butterworth filter with cut-off freqeuncy of

20 Hz. Finally, T waves were considered only to build the

input data matrix for the further PCA analysis. PCA is a

multivariate statistical technique that allows for the identi-

fication of key variables, or combinations of variables, in a

multidimensional data set that best explains the small dif-

ferences between individual observations. In other words,

PCA involves a mathematical procedure that transforms a

number of (possibly) correlated variables into a (smaller)

number of uncorrelated variables called principal compo-

nents. The first principal component accounts for as much

of the variability in the data as possible, and each suc-

cessive component accounts for as much of the remaining

variability as possible. Our approach is aimed to employ

PCA scores, namely the first PCA scores which are derived

from PCA coefficients and represent the highest degree of

deviations from the mean for every T wave, in a beat-to-

beat analysis. In other words, PCA is employed to extract

morphological features represented by PCA scores for ev-

ery input T wave signal. The beat-to-beat fluctuation of the

first PCA scores represents the deviation of T wave mor-

phology to the mean T wave. The first PCA scores are then

analysed in order to assess the degree of variation for all T

waves compared to their mean T wave, i.e. the beat-to-beat

T-wave morphology variation throughout the whole chan-

nel. The same procedure was applied on healthy and TDP

signals.

Figure 1. 77581 QRST complexes obtained by applying

the data preconditioning on the first channel of a healthy

tape (Pfizer, Inc.). The T-wave data matrix for PCA is the

sub-matrix of QRST complexes starting at 200 (msec) in

this case.

2. Methods

2.1. Data preconditioning

First of all, a new offline method for automatic baseline

wander correction in Electrocardiogram, based on Mal-

lat algorithm in DWT, is used to filter out the whole data

set under studies. The method is able to segregate more

than 99.5% of the baseline drift artefact in the signal with-

out any distortion of ST segment as observed with other

conventional high-pass filtering methods and other exist-

ing methods. Details of the method can be found in [8].

The next step is to localize QRS complex onset, R peak

and T wave offset for every beat in the whole two-channel

healthy and TDP tapes. An accurate and novel threshold-

independent ECG delineation system was applied in this

work [9]. Detection of the fiducial points is based com-

pletely on analysing the first scale details coefficients ob-

tained by applying Haar function as mother wavelet. In or-

der to get rid of unusual, ectopic and noisy detected beats

and outliers, a new effective tool was developed to elim-

inate the wrong results. It provides a high level of confi-

dence in the data to be analysed further. This method is

based on Hotelling’s T squared measure as an overall mea-

sure of variability in the dataset. After localizing QRST

complexes, free of outliers or ectopic beats, in each chan-

nel, QRST complexes belonging to the same channel are

extracted and assembled in one matrix, so that they rep-

resent the rows of that matrix . Afterwards, each QRST
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complex in this matrix is shifted toward right and left a

certain small number of samples and finally aligned at the

position corresponding to the highest cross-correlation co-

efficient between this QRST complex and a chosen tem-

plate signal, which is in this case the average of all QRST

complexes. The aim of this fine alignment is to correct for

any tiny misalignment between the extracted QRST com-

plexes to their R peaks in order to provide a suitable input

for the further analysis. Thereafter, a second-order Butter-

worth filter with cut-off freqeuncy of 20 Hz was applied on

each QRST complex in the matrix. The input matrix for the

next step, denoted as T, is a submatrix of QRST-complex

matrix. It has the same number of rows (signals), but it

has smaller number of columns as it starts from a chosen

common point on ST segments from the QRST complexes

and has the same end of the bigger matrix covering and

including only T waves, figure 1.

2.2. Morphological feature extraction us-

ing PCA

1. Organizing the data set: Suppose that the matrix T is

a training set with N samples and each sample Ti can be

expressed by a row vector with the size of M as follows:

Ti = [Ti1, Ti2, · · · , TiM ].
The training set is placed into a single matrix T of dimen-

sions N × M , so that N are the observations and M are

the dimensions.

2. Calculate the empirical mean :The empirical mean

along each dimension m = 1...M is calculated. Aftre-

wards, all computed mean values are placed into an em-

pirical mean row vector u of dimensions M .

u(m) = 1

N

N
∑

n=1

X(n, m), m = 1, 2, · · · , M

3. Calculate the deviations from the mean: The empirical

mean row vector u is subtracted from each row of the data

matrix T . Then a new mean-subtracted data matrix B(N×
M) is derived.

B = T − h · u,

where h is a column vector of ones and size of N x1 :

h(n) = 1 for n = 1 . . .N,

4. Find the covariance matrix: As illustrated before, the

M × M empirical covariance matrix C is calculated from

the outer product of the zero-centered matrix B with itself:

C = E [B ⊗ B] = E [B · B∗] = 1

N−1
B ·B∗,

where E is the expected value operator,⊗ is the outer prod-

uct operator, and ∗ is the conjugate transpose operator.

5. Find the eigenvectors and eigenvalues of the covari-

ance matrix: This step will typically require the use of

a computer-based algorithm for computing the eigenvalue

matrix D and the eigenvector matrix V of the covariance

matrix C: C · V = V · D, Matrix D will take the

form of an M × M diagonal matrix, where D[p, q] =

λm for p = q = m is the mth eigenvalue of the

covariance matrix C, and D[p, q] = 0 for p 6= q.

Matrix V, also of dimension M × M , contains M column

vectors, each of length M , which represent the M eigen-

vectors of the covariance matrix C.

The eigenvalues and eigenvectors are ordered and paired.

The mth eigenvalue corresponds to the mth eigenvector.

6. Rearrange the eigenvectors and eigenvalues: The

columns of the eigenvector matrix V and eigenvalue ma-

trix D are sorted out in order of decreasing eigenvalues

maintain the correct pairings between the columns in each

matrix.

7. Convert the source data to the new basis: The new basis

is denoted as PCA-scores or the reconstruction parameter

vectors (RPV). The projected vectors are the columns of

the matrix Z(N×M), namely Zi1, Zi2, · · · , ZiM, where

i = 1...N . The matrix Z is calculated by multiplying the

eigenvector matrix with the zero-mean data matrix from

the left as follows:

Z = B · V = KLT{T} =







z11 · · · z1M

...
. . .

...

zN1 · · · zNM






,

The rows of Z correspond to the observations, whereas the

columns refer to the components or dimensions.

In fact, the projected PCA-scores or vectors represent the

Karhunen-Loève transform (KLT) of the data vectors in

the columns of matrix T.

2.3. Analysing the first PCA scores

Since the first PCA scores represented in the first col-

umn vector of the matrix Z accounts the most of the vari-

ance in the data, analysis was carried out only on these

scores so far. Standard deviation (SD) was used and ap-

plied on the first PCA scores as a simple linear measure

to assess the beat-to-beat morphology variation. As the

length of the first PCA score vector is N , the number of

T waves in one channel, a window of length 60 with zero

overlapping was chosen to scan this vector calculating the

SD for the scores inside this window at each step. Finally,

a series of SD values will come out. High SD value rep-

resents high beat-to-beat PCA score variation , i.e. high

beat-to-beat T-wave morphology variation, and vice versa

for the low SD value. In order to get an overall measure of

variation for each channel, mean of the derived SD values

was calculated.

3. Results

The method illustrated above for calculating the over-

all measure of variation was applied on every channel of

all healthy subjects. Furthermore, this overall measure of

variation was calculated twice on every channel of TDP
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subjects. The first one measures T-wave overall varia-

tion from the beginning of the tape until TDP episode,

whereas the second one measures T-wave overall varia-

tion starting after TDP episode until the end of the tape.

The avarage value of the overall measure of variation for

84 useful channels from the healthy tapes was equal to

73.8119 ± 12.4222. The avarage value of the overall mea-

sure of variation for T waves before TDP episode of 20

useful channels from the TDP tapes was equal to 241.9493

± 168.3503, whereas the avarage value of the overall mea-

sure of variation for T waves after TDP episode of 20

useful channels from the TDP tapes was equal to 145.7783

± 86.3924

Since the SD values for all TDP tapes before and after

the episode are available, it is useful to employ them in or-

der to have a closer and more detailed information about

the beat-to-beat T wave morphology variation before and

after TDP episode. Therefore, the mean of SD values for

all channels before and after TDP episode was calculated.

Because every channel has a different number of SD win-

dows before and after TDP, the SD windows for all chan-

nels before TDP were rearranged, so that they are right

aligned to the last window just before TDP episode. On

the other hand, the SD windows for all channels after TDP

were kept left aligned to the first window just after TDP

episode. The calculation of the final mean SD values of

similar windows did not take into calculation any possible

missing SD values, i.e. missing windows . Figure 2 shows

the final results.
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Figure 2. The final results obtained from 20 channels of

10 TDP tapes. TDP in all tapes occured and self-stopped,

so that the patient got recovered again after its episode in

all the cases under study.

4. Discussion and conclusions

Figure 2 shows that the beat-to-beat morphology T-wave

variation before TDP episode is remarkably higher than

the normal level, more chaotic and increased by approach-

ing the TDP episode. Figure 2 illustrates also that the T-

wave beat-to-beat morphology variation after TDP episode
is not as high as before TDP episode and is decreasing by

receding away from TDP episode until it reaches the nor-

mal variation level. Referring to our results, detecting pre-

disposition to TDP is possible some hours prior to TDP

episode employing the normal level of T-wave variation

derived by our calculation.
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