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Abstract

In this work a methodology of heart murmur detec-

tion by means of time–frequency representations (TFR)

based on time–varying auto regressive (TVAR) modeling

of phonocardiographic signals is proposed. Time–varying

coefficients are estimated with Kalman smoother obtain-

ing improved estimation precision and appropriate track-

ing of time–varying dynamics of phonocardiographic sig-

nals. TFRs derived from TVAR parameters are decimated

with wavelet decomposition and taken to a feature space

with PCA embedding (eigenfaces). Analysis of identifica-

tion performance is accomplished for a database com-

posed of 201 normal PCG records, and 201 murmurs.

Results show that TFRs derived from Kalman smoother

can discriminate normal heart sounds and murmurs bet-

ter than other parametric TFRs obtained from LMS and

RLS parameter estimation algorithms and non parametric

TFRs based on Choi–Williams distribution.

1. Introduction

Cardiac mechanic activity can be estimated by means of

auscultation and processing of heart sound records, known

as phonocardiographic signals (PCG), a non–invasive low–

cost technique. The importance of classical auscultation

techniques has diminished because of its inherent restric-

tions, such as: human hear limitations, subjectivity of the

specialist, the discernment abilities that can take years in

being obtained, among others. Anyway, PCG records are

very important in heart pathologies diagnosis [1], in eval-

uation of congenital heart defects [2], and in home health

care, where an intelligent stethoscope with decision sup-

port capabilities can be helpful [2, 3].

Heart sounds consist of two regular consecutive thuds,

known as S1 and S2, corresponding to closing of tricus-

pid and mitral valves and closing of aortic and pulmonar

valves. Whenever a valvular pathology is present, blood

flow in the heart becomes turbulent, causing vibration in

the neighboring tissues and a perceptible noise called mur-

mur. Heart murmurs are signs of pathologic changes in the

heart, but their presence isn’t easy to recognize because

they are overlapped with normal heart sounds. The au-

tomatic detection of heart murmurs strongly depends on

appropriate feature estimation, being timing, morphology

and spectral properties of heart sounds most valuable fea-

tures [4, 5]. Time–frequency representations (TFR) are ca-

pable of capture non–stationarity and frequency dynamical

changes, being this the reason why they have been wide-

ly used to characterize non–stationary transients and fast

changes of PCG signals [6–10].

Using time–varying auto regressive (TVAR) modeling

for TFR estimation, several advantages can be obtained,

such as [11]: representation parsimony (given that the sig-

nal is specified with a limited number of parameters),

improved precision, improved resolution (due to under-

lying interpolation given by the model), improved track-

ing of time–varying dynamics, flexibility in analysis, as

parametric methods are capable of directly capturing the

underlying structural dynamics responsible for the non-

stationary behavior, among others. In our work we use

Kalman smoother as TVAR parameter estimator, because

it can effectively estimate parameters of linear models and

also can track time–varying dynamics of PCG signals [12].

The proposed method consists on estimation of TVAR

parameters with Kalman smoother. From these parame-

ters the TFR of the PCG signal is constructed. These sur-

faces are decimated with wavelet decomposition and taken

to a feature space with PCA embedding (eigenfaces). Fi-

nally, samples in feature space are classified with k near-

est neighbors. By means of wavelet decimation and PCA

redundant information is reduced and most relevant fea-

tures from TFRs are obtained, improving classification

performance. We make cross validation of features ob-

tained with our approach and compare with other method-

ologies, such as parametric TFR obtained with LMS and

RLS algorithms and non parametric TFR obtained with

Choi–Williams distribution (CWD). Results show that our

approach can discriminate heart murmurs with best correct

rate, sensitivity and precision of the methodologies.
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2. Methods

2.1. Parametric TFR estimation

In a TVAR(p) model, time series y[k] depends on the

weighted sum of the preceding p values {y[k−n]}p
n=1

and

a random process ξ[k] ∼ N (0, σ2

ξ [k]), where the weight-

ing values {an[k]}p
n=1

can change along time:

y[k] =

p∑

n=1

an[k]y[k − n] + ξ[k] (1)

The TFR G(k, f) of the process y[k] can be obtained with

the following transformation [13]:

G(k, f) =
σ2

ξ [k]/fs

1 +
p∑

n=1

an[k]e−j2πnf/fs

(2)

where fs is the sampling frequency. On difference with

other TFR estimation methods, parametric TFR is superior

due to implicit extrapolation of autocorrelation sequence.

TFR estimation with this method consists of two steps,

estimation of model order and estimation of parameter vec-

tor aaa[k] = [a1[k] . . . ap[k]]⊤ and variance σ2

ξ [k]. Overall

quality of TFR depends on the model order and estimation

method.

Model order estimation can be done with information

criteria, such as Akaike information criterion or Bayesian

information criterion [14]. These criteria are based on min-

imization of a function related with the information content

on the estimation residuals. Information criteria should be

calculated on stationary segments, but still can be used for

non–stationary environments, using [15]:

BIC(p) =
N

M

M∑

k=1

ln σ̂2

p,k + p lnN (3)

where σ̂2

p,k is the variance of estimation residuals for a p
order model, from sample yk, M is the number of estima-

tion windows used and N is the length of the window.

Time–varying parameters of TVAR model with Kalman

smoother can be estimated by casting the problem into

state space form, as follows [13]:

aaa[k + 1] = aaa[k] + www[k] (4)

y[k] = HHH [k]aaa[k] + ξ[k] (5)

where aaa[k] is the parameter vector of length p, www[k] is

white Gaussian noise N (0,RwRwRw) and HHH[k] = [y[k −
1] . . . y[k − p]] is the regression vector. Equation (4) is

known as process equation and defines how the param-

eters change along time, while equation (5) is known as

measurement equation corresponding to a linear observa-

tion model of the parameter vector. Noise sources www[k] and

ξ[k] introduce uncertainty on the model, www[k] defines ran-

dom changes of the parameter vector, while ξ[k] defines

the estimation residuals and also randomness in the TVAR

model.

Equations (5) and (4) form the state space model of

the TVAR process y[k], which can be estimated with the

Kalman filter [12]. After estimation with Kalman filter, it

is possible to improve the estimation with a fixed interval

smoothing, which also takes into account future values of

y[k] to estimate the state of the system.

Estimation residuals of Kalman smoothing are used to

estimate the variance of the random process in (1), as fol-

lows:

σ̂2

ξ [k] =
α

M

M∑

i=1

gie[k − i]2 + (1 − α)σ̂2

ξ [k − 1] (6)

where e[k] = y[k] −HHH [k]â̂âa[k − 1] is the estimation error,

ggg = [g1 . . . gM ] is a smoothing window and α a smoothing

parameter, both serve to diminish the effects of estimation

error and high frequencies.

2.2. Dimensionality reduction scheme

TFRs obtained with any methodology, as those obtained

with the parametric approach by equation (2) represent a

features of a heartbeat which is difficult to classify due

to its high dimensionality and redundancy. In order to re-

duce and select most effective features of the TFR we use

wavelet decomposition and PCA analysis.

By means of wavelet decomposition the original TFR

can be downsampled in a series of low–frequency and

high–frequency components known as approximation and

detail coefficients several times until the desired decom-

position level is reached [16]. At each level of the decom-

position, frequency resolution is doubled through filtering

while the spatial resolution is halved by downsampling

operation. Resulting coefficients are equally sized images

four times smaller than the original one, which preserve

information of low frequencies and high frequencies. As

most information on TFRs is contained on low frequen-

cy components, only the approximation coefficients of the

desired decomposition level are used.

Dimensionality and redundancy of resulting images

from wavelet decomposition are still unappropriate, so a

second step is needed. PCA is a technique that takes a set of

points and transforms them to other space through a linear

transformation which minimizes covariance between com-

ponents. If we just take the components enclosing most of

the information or variation, PCA would be a dimensional-

ity reduction scheme as well. PCA on images can be done

by the approach of eigenfaces [17]. The new representation
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space formed by the maximum variability components is

the feature space which will serve to train classifiers.

3. Results

3.1. Database

The database used in our tests consists on 148 PCG from

individuals with possible valvular pathologies, acquired

with an electronic stethoscope (WelchAllyn R© Meditron

model). Records are digitized at 44.1 kHz with a resolution

of 16-bits per sample. Eight recordings of twelve seconds

corresponding to the four traditional focuses of ausculta-

tion (mitral, tricuspid, aortic and pulmonary areas) were

taken for each patient in the phase of post-expiratory and

post-inspiratory apnea. A group of cardiologists labeled

the records, obtaining 50 normal PCG and 98 records with

evidence of valvular disorders (aortic stenosis, mitral re-

gurgitation, etc). The records are filtered to diminish ef-

fects of acquisition noise, resampled at 4KHz and seg-

mented by beat. After a second inspection, the best of the

segmented records where taken, thus obtaining 201 normal

beats and 201 pathological beats.

3.2. TFR estimation

TFRs are obtained with four methods: Choi–Williams

distribution, and parametric TFR estimated with least min-

imum squares (LMS), recursive least squares (RLS) [18]

and Kalman smoother (KSm). The parameter values for

each one of the algorithms are shown in Table 1. For para-

metric TVAR models the estimated order with Bayesian

information criterion in equation (3) is 6, and TFRs are

obtained for frequencies between 0 and 400Hz. Resulting

surfaces have 4800×512 points. Examples of TFRs ob-

tained with the methodologies are shown in Figure 1.

Methodology Parameters

CWD σ = 2, Nfft=1024
LMS µ = 2
RLS λ = 0,99
Kalman Smoother λ = 0,99
Variance estimation g = gausswin(200, σ), σ = 1/2,

α = 0,98

Table 1. Estimation parameters of the studied methods.

3.3. Classification results

Dimensionality reduction was made as explained in

Section 2.2. We used Daubechies 2 wavelet family and

two levels of decomposition in the wavelet decomposi-

tion scheme and 15 principal components in PCA analy-

sis, which gave, in the worst case, 90 % of the variability.

We made cross validation of k nearest neighbors classifier
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Figure 1. Obtained TFRs for normal PCG and murmurs.

on the feature space obtained after dimensionality reduc-

tion, taking on 11 folds, 70 % training and 30 % validation

sets obtained by random sampling. Figure 2 shows cross

validation results.
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Figure 2. Cross validation results.

4. Discussion and conclusions

In this document it has been proposed a methodology for

PCG signals characterization with parametric TFRs. Re-

sults show that parametric TFRs estimated with Kalman

smoother extract time–frequency information from PCG

signals that can discriminate between normal beats and

murmurs. In comparison with other estimators of TVAR

models, Kalman smoother can estimate, with improved ac-

curacy, time–changes of TVAR parameters and, therefore,

frequency changes of the PCG signal.

The parametric approach has shown that can appropri-

ately embed time–frequency information of a signal with a

reduced number of parameters. Also, this approach is less

computationally demanding, even with the most elaborat-

ed estimator, the Kalman smoother. Obtained classification

results show that parametric TFR estimated with Kalman
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smoother is more informative than Choi–Williams distri-

bution.

Dimensionality reduction scheme for TFRs has shown

that can effectively extract information from these sur-

faces, allowing good classification performance. It also

shows that TFR are highly redundant, because it was pos-

sible to classify TFR with 4800×512 points, just with 15

derived features.
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Avances en Sistemas e Informtica 2008;5(1).

[16] Mallat S. A Wavelet Tour of Signal Processing. Second

edition. Academic Press, 1999.

[17] Turk M, Pentland A. Eigenfaces for recognition. J Cogni-

tive Neuroscience 1991;3(1):71–86.

[18] Diniz PS. Adaptive filtering, algorithms and practical im-

plementation. Kluwer Academic Publishers, 2002.

Address for correspondence:

Luis David Avendaño V.

Cra. 20B No. 65 A 22, Los Laureles, Manizales, Caldas, Colom-

bia. ldavendanov@unal.edu.co, ldavendanov@gmail.com

160


