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Abstract

In echocardiography, left ventricle detection is a com-

mon practice in order to retrieve indexes of myocardial

health. Although a great attention has been given to the

segmentation of the endocardium, very limited literature

addresses the detection of both endo- and epicardial con-

tours. Hereto, in this study we propose an original level-

set technique specifically designed for the detection of the

whole myocardium in short-axis ultrasound scans. A local-

ized version of standard region-based methods is adopted,

and allows to deal with low-contrast boundaries. More-

over, shape prior information is efficiently embedded in the

evolution equation, thereby preventing the detection of un-

desired structures, like papillary muscles. An evaluation is

presented on a set of 40 frames from 5 different patients.

The proposed method is shown to be a reliable tool for

an accurate segmentation of the full myocardium on ultra-

sound scans.

1. Introduction

Left ventricle segmentation is fundamental in order to

retrieve important indexes of heart function, such as ejec-

tion fraction and cardiac output. These measures are of-

ten obtained via manual segmentation, which is subjective

and time consuming, due to the intrinsic low SNR of ultra-

sound scans. To reduce inter- and intra-observer variability

in border detection and to speed up the segmentation pro-

cess, an automated procedure is desirable [1].

While great attention has been given to the segmenta-

tion of the endocardium, very limited literature addresses

the detection of the epicardium [1–3]. This is due to the

fact that signal dropouts and complex interactions between

the ultrasonic pulse and the tissue make the epicardial con-

tour appear highly heterogeneous and discontinuous. Nev-

ertheless, a trustful detection of both structures has a high

clinical relevance, since it would allow the computation

of fundamental parameters as the ventricular mass, which

has been proven to be an important precursor for a variety

of conditions such as cardiomyopathy, hypertension and

valvular disease. In this context, we have recently pro-

posed in [4] a level-set approach for simultaneous segmen-

tation of endo- and epicardium from parasternal short-axis

(SAx) views. Although good performances was observed,

the algorithm suffered from undesired irregularities in the

final solution, due to the attachment of the active contour to

undesired structures, like papillary muscles. In this work

we propose a method to avoid this effect by embedding a

priori knowledge on the myocardial shape in the segmen-

tation process. Specifically, we assume that the myocardial

shape may be approximated by two ellipses, an inner and

an outer one (in the sequel, we will refer to the shape com-

prised between two ellipses as annular). This assumption

is indeed well supported by observation on SAx views [5].

In order to address the shape prior segmentation of both

contours with a single level set function we introduce in

this paper an original parametric formulation of the dis-

tance from an annular shape as well as a fast solution to

the least-squares fitting of such patterns. A validation is

presented which shows that the resulting algorithm is a re-

liable tool to segment the full myocardium. In particular,

a comparison with the results obtained with [4] shows the

important improvement due to the shape prior information.

The remainder of the paper is structured as follows. In

section 2 the level-set equation for the presented frame-

work is derived, with a focus on how the shape prior is

handled. In section 3, several implementation issues are

addressed. In section 4 the validation is presented.

2. Proposed method

2.1. Level-set framework

Let Ω ⊂ R
2 denote the image space. In the level-set

formalism, the evolving interface Γ ⊂ R
2 is represented
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Figure 1. Example of level set function used in this work.

The zero level is represented as a red bold line and pro-

vides the 2 contours corresponding to the boundary of the

annular target.

as the zero level-set of a Lipschitz-continuous function

φ : Ω → R. The problem of segmenting one object from

the background is then handled by the evolution of one

level-set driven by the minimization of a specific energy

criterion; its steady state partitions the image into two re-

gions that delimit the boundaries of the object to be seg-

mented. Since we are addressing the joint detection of two

separate contours, i.e. endo- and epicardium, we adopt a φ
function with a disjoint zero-level, as the one in Fig. 1.

Regarding the energy criterion, as in [6], we adopt the

following general expression:

E = Edata + α · Eshape (1)

where Edata represents the data attachment term, driving

the segmentation to particular image features, and Eshape

is a shape prior term, preserving the similarity between the

moving interface and the reference model.

2.2. Data attachment term

The data attachment term we adopt in this work is di-

rectly derived from the energy criterion presented in [4].

For matter of space, in this section we only present the ba-

sic equations. The interested reader is referred to [4] for a

more detailed explanation.

In [4] we adopted a localized version of standard region-

based approaches [7] in order to deal with the hetero-

geneous properties of the epicardial contour. The Bhat-

tacharyya coefficient B(p1, p2) was adopted to drive the

segmentation process, which is a measure of the superpo-

sition between two probability density functions (pdfs) p1
and p2. Then the resulting algorithm proceeded by seeking

the maximal statistical separation between target, i.e. the

myocardium, and background. The energy criterion we

adopted writes as:

Edata =

∫

Ω

δ(φ(x))

∫

Ω

W (x,y)B(pin, pout)dydx (2)

where W (·) is a binary mask defining, for every point x on

the active contour, the region on which the curve velocity

is computed and pin and pout, are the pdfs describing the

gray scale pixel distribution inside and outside the moving

interface.

As proposed in [8], we assume a Fisher-Tippet probabil-

ity density function to model the pdf of the log-compressed

echo signal, i.e.:

p(I|σ) = 2 exp
(

[2I − ln(2σ2)]− exp
(

[2I − ln(2σ2)]
))

,
(3)

where I is the pixel intensity and σ is the parameter of the

distribution. Substituting (3) in (2) we derived the follow-

ing level-set equation:

∂φ

∂τ
(x) = f(x) · δ(φ(x)) (4)

where δ(·) is the Dirac delta function and

f(x) =

∫

Ω

(

W (x,y) δ(φ(y))
(σx,oσx,i)(σ

2
x,o − σ2

x,i)

(σ2
x,i + σ2

x,o)
2

· (5)

·

{

1

|Ωx,o|

[

e2I(x) − 1

2σx,o

− 1

]

+
1

|Ωx,i|

[

e2I(x) − 1

2σx,i

− 1

]})

dy

The sets Ωx,i (Ωx,o) contains the pixels belonging to the in-

tersection between the localizing mask and the inside (out-

side) of the moving interface and σx,i and σx,o correspond

to the ML estimates of the distribution parameters on Ωx,i

and Ωx,o respectively.

2.3. Shape prior term

In this work we adopt the following shape-prior term:

Eshape =

∫

Ω

Ψ2(x,λ)||∇φ(x)||δ(φ(x)) (6)

where Ψ(x,λ) is the implicit function representing the dis-

tance of a point x to the annular shape defined by the pa-

rameters λ. Clearly (6) reads as a measure of the distance

between the active contour and the prior shape, and there-

fore imposes a similarity between the segmentation result

and the prior itself. We propose here to adopt the following

parametric expression for Ψ:

Ψ(x,λ) = max{E(x,λout),−E(x,λin)} (7)

where λin and λout represent the parameters of the inner

and outer ellipses, and E is the algebraic distance of a point

to the ellipse, represented by the standard quadratic equa-

tion for conic sections.

The minimization of (6) is addressed in a two phase

scheme. Specifically, keeping λ fixed, φ is evolved ac-

cording to the level-set equation:

∂φ

∂τ
= δ(φ(x))g(x,λ) (8)
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where

g(x,λ) =

{

2Ψ
∇Ψ · ∇φ

||∇φ||
+Ψ2div

(

∇φ

||∇φ||

)}

(9)

where the dependence of φ and Ψ on x has been omit-

ted for compactness of notation. Then, keeping φ fixed, λ

is updated according to the following least-squares fitting

problem:

λ = argmin
λ′

∮

Γ

Ψ2(s,λ′)ds = argmin
λ′

∑

xi∈Γ

Ψ2(xi,λ
′)

(10)

By noting that ||∇φ|| = 1 because of the signed distance

property [9], then (10) corresponds to the exact minimiza-

tion of (6) w.r.t. λ. The rightmost of (10) is justified by the

fact that the image space is in practice discrete.

In the following subsection we propose a fast solution to

the least squares fitting problem in (10), which can be em-

ployed for implementing efficiently the parameters update

step.

2.3.1. Least-squares fitting of annular shapes.

Considering (7), we can rewrite the sum in (10) as:

J(x,λ) =
∑

x∈ΓA

E2(x,λout) +
∑

x∈ΓB

E2(x,λin) (11)

where the partition Γ = {ΓA,ΓB} has been introduced

ΓA(λin,λout) = {x ∈ Γ|E(x,λout) ≥ −E(x,λin)}
(12)

ΓB(λin,λout) = {x ∈ Γ|E(x,λout) < −E(x,λin)}

From this formulation we observe that (11) can be min-

imized by fitting two separate ellipses on ΓA and ΓB, for

which fast direct solvers exist [10]. We thus propose to

minimize J with the algorithm summarized in Table 1,

which proceeds by alternatively fitting two separate el-

lipses on ΓA and ΓB and then updating the two sets ac-

cording to (12). By doing so, the energy J is ensured to

decrease at each step. In Table 1 we call fitLS the function

performing the direct least-squares ellipse fitting described

in [10].

On all our simulations, the described fitting algorithm is

found to converge in less then 5 iterations, which makes

the amount of computation due to the solution of (10) es-

sentially negligible.

3. Implementation issues

We implemented our level-set evolution equation using

a standard finite difference scheme [9], where φ is repre-

sented by a signed distance function. In order to improve

Table 1. Least Squares Fitting Algorithm

Input data: λ̂
(0)

in , λ̂
(0)

out, k=1, tol = 1e-2

Initialization:

E(0) = J
[

λ̂
(0)

in , λ̂
(0)

out

]

;

Γ
(0)
A = ΓA

[

λ̂
(0)

in , λ̂
(0)

out

]

; Γ
(0)
B = ΓB

[

λ̂
(0)

in , λ̂
(0)

out

]

;

while ǫ > tol do:

λ̂
(k)

in = fitLS
[

Γ(k-1)
B

]

; λ̂
(k)

out = fitLS
[

Γ(k-1)
A

]

;

Γ(k)
A = ΓA

[

λ̂
(k)

in , λ̂
(k)

out

]

; Γ(k)
B = ΓB

[

λ̂
(k)

in , λ̂
(k)

out

]

;

E(k) = J
[

λ̂
(k)

in , λ̂
(k)

out

]

;

ǫ = ||E(k) − E(k-1)||/||E(k-1)||; k=k+1;

end while

efficiency, we only compute values of φ in a narrow band

around the zero level set [9]. Consequently, we re-initialize

φ every iteration using a fast marching scheme.

The final curve velocity is given by f(x) + α · g(x,λ),
where f and g are defined as in (5) and (9). A value of 0.8

was assigned to α in all the experiments presented in the

paper.

Furthermore, let us note that the adoption of a localized

framework [7] imposes an initialization not too far from

the desired solution, in order to obtain meaningful results.

The following simple procedure is thus followed to ini-

tialize our algorithm. The user is asked to place six points:

five points are used to set an initial ellipse for the epicardial

wall and a last point is needed to obtain the internal con-

centric ellipse representing the endocardium. The union of

the two ellipses is taken as initialization. In the result sec-

tion we display the five points on the epicardium as green

dots and the one on the endocardium as a green triangle.

Finally, the localizing approach is implemented by assum-

ing as mask W a disk whose radius was experimentally set

to 10 pixels.

4. Results

As a preliminary evaluation, the algorithm was validated

on a set of B-mode images acquired on 5 different patients.

For each sequence 8 frames equally spaced within one car-

diac cycle were considered, for a total of 40 scans. Data

were acquired using a Toshiba Powervision 6000 (Toshi-

ba Medical Systems Europe, Zoetermeer, the Netherlands)

equipped with a 3.75 MHz-probe. The algorithm was ini-

tialized by a non-expert user as described in the previous
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Figure 2. On each box the central mark is the median and

the edges are the 25th and 75th percentiles, the whiskers

are the 5th and 95th percentiles. In (a) and (c) the results

obtained using the shape prior, in (b) and (d) the results

when the shape prior is not taken into account. The labels

C1 and C2 correspond to the comparison of the segmenta-

tion results with the reference provided by the first or the

second cardiologist while label C1-C2 corresponds to the

comparison between the contours provided by the two car-

diologists themselves.

section. Manual segmentation drawn by two expert cardi-

ologists was used as reference.

We assessed the performances of the algorithm by mea-

suring Mean Absolute Deviation (MAD) and Hausdorff

Distance (HD) between automatic and reference contours,

as well as the correlation coefficient (R) between the areas

they enclose. To study the effect of the shape information

we run our algorithm both with and without including such

term in the evolution equation. A segmentation result ex-

ample is given in Fig.3.

When the shape information is considered we obtained

MAD = 3.1 ± 0.5 pixels and HD = 9.2 ± 2 pixels. The

correlation coefficient was R = 0.98. When the shape

is not considered the performances decrease giving MAD

= 5 ± 1.4, HD = 15.6 ± 4.8 and R = 0.94. From the

comparison of these results with the inter-observer vari-

ability measured between the two manual contours, given

by MAD = 3.7± 1.2 and HD = 10.6± 3.7, we can deduce

the suitability of the presented shape prior segmentation

framework in producing trustful results.

A box plot representation of the complete set of results

is shown in Fig.2.

(a) (b)

Figure 3. In (a) result without the shape prior, in (b) result

with the shape prior. Dashed white contour is the man-

ual reference, the bold yellow one is the detected contour.

Green spots are the initialization. We measured HD=13.5

and MD=5.5 for (a), and HD=8.1 and MD=3.3 for (b). All

these values are expressed in pixels.

5. Conclusions

We described a level-set approach for segmentation of

the full myocardium in echocardiography. The results

show that the proposed method in realistic clinical data is

feasible and accurate.
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