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Abstract 

Large-scale biophysically detailed computer models of 

the heart provide a useful tool to understand dynamics of 

cardiac excitation and mechanisms underlying lethal 

cardiac arrhythmias. However, high demanding of 

intensive high performance computing environments 

limits the practical application of such models.  

This paper presents a novel use of a desktop personal 

computer and the CUDA parallel computing architecture 

for a highly efficient method of parallel simulation of a 

3D ventricular model. We show that substantial speed 

increases can be obtained using a desktop Graphical 

Processing Unit (GPU) compared to a single desktop 

Central Processing Unit (CPU), and that a single GPU 

can be an effective substitute to large numbers of CPUs. 

 

 

1. Introduction 

Although a vast amount of experimental and clinical 

data has been collected on the underlying ionic, cellular 

and tissue substrates, mechanisms of lethal cardiac 

arrhythmias arising from the functional interactions of 

these aspects at the whole heart level still remain unclear. 

Quantitative computer models of the heart integrating 

multi-scale data provide a powerful tool to understand 

arrhythmogenic mechanisms. The models allow detailed 

studies into the complex dynamics of three-dimensional 

(3D) spatio-temporal cardiac excitation waves in various 

physiological and pathological conditions, across various 

multi-physical scales [1-3]. However, the computational 

costs associated with large-scale cardiac simulations on 

3D tissue geometries increases proportionally with 

increasing resolution (spatial and temporal), and with 

increasing levels of detail (electrophysiological, 

anatomical and mechanical) incorporated into the model. 

In order to implement these complex cardiac models, 

several parallel computing paradigms have been 

developed using cutting edge High-Performance 

Computing (HPC) facilities [4-6]. However, the reality 

that a limited number of such HPC facilities exist makes 

such paradigms both costly and inconvenient. 

In this paper, we show that widely available Graphical 

Processing Units (GPUs) can offer a cheap, convenient 

alternative to large numbers of Central Processing Units 

(CPUs), and can allow a substantial increase in the 

computational speed of large-scale, high-resolution, 

detailed simulations of cardiac excitation waves, even 

with the computational environment offered by a single, 

standard desktop PC. 

 

2. Cardiac simulation 

An anatomically accurate and biophysically detailed 

model of a rabbit ventricle was developed. The geometry 

of the rabbit ventricles was extracted from a whole heart 

DT-MRI dataset [7], including anisotropic fiber 

orientations. Atrial tissue and all visible noise (such as 

blood filling the right ventricular cavity) were removed. 

The spatial resolution of the resultant 3D ventricular 

geometry was 200µm in each direction. The total 

dimensions were 128 x 120 x 114. 

Both ventricles were then segmented, the left ventricle 

into epicardial (Epi), mid-myocardial (M) and 

endocardial (Endo) regions, with Endo cells forming a 

layer around the cavity wall, Epi cells forming the 

external surface layer, and M cells in between; and the 

right ventricle into Epi and Endo cells. Previously 

developed cellular models for the ventricular Endo, M 

and Epi cells [8] were incorporated into the 3D geometry 

to simulate the electrical activity of the ventricles . 

The mono-domain equation [1-3] was used to describe 

the electrical excitation dynamics in the tissue: 
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Here V is the membrane potential (mV), t is time (s), D 

is the tensor of diffusion coefficients (mm
2
ms

-1
) that 

characterize the electrotonic spread of voltage via the gap 

junctions, Iion is the total ionic current (pA), and Cm is the 

membrane capacitance (pF). Anisotropy was achieved by 

setting different diffusion coefficients in each direction; 

D║, D┴1, and D┴2 were set to 0.3, 0.075 and 0.0083 

mm
2
/ms respectively. 
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Equation (1) was solved by using the finite difference 

approach based on the forward Euler’s method with a 

spatial step of 0.2mm and a time step of 0.005ms. 

 

3. Graphical processing units 

The GPU is a piece of specialized hardware resident 

within most personal computers for the purpose of 

graphical rendering. A Modern GPU is a highly data 

parallel processor, containing several hundreds of stream 

processors running in a Single Instruction Multiple Data 

(SIMD) model. The SIMD model reduces the time 

required for computation by forcing the condition that the 

same operation is carried out on each thread. SIMD 

launches a series of operations called the kernel, which 

carries out the same operation on thousands of threads 

with consequently very little memory overhead. This 

allows near-simultaneous calculation of many 

independent floating point operations; however it also 

means that the GPU architecture is suitable only for 

independent, data-parallel computations.  

The electrophysiological activity in cardiac tissue can 

be separated into two components: one the electrical 

membrane current due to ion channels across each cell 

wall opening/closing; an independent process relative to 

other cells and the other is the localised diffusion of 

membrane potential between cells due to the intracellular 

coupling; a process dependent only on each cell and its 

closest neighbours. This independent nature of cardiac 

modelling makes it an ideal candidate for GPU use. 

In order to take advantage of the drastic increase of 

GPU power in recent years, many new hardware and 

software architectures for GPU programming have been 

created [9-10], and used for a variety of scientific 

applications [11-12]. However, the increase in 

computational speed for such a highly parallelized 

processor has a high dependence on software 

parallelisation, especially under SIMD architecture, 

where a similar amount of time is required to run an 

operation on one thread, or on thousands of threads. A 

variety of speed increases in the range 10x-150x have 

been reported by the aforementioned scientific 

applications, but the effects of GPU parallelization on 

computational tasks within the field of cardiac modelling 

have not been studied. Therefore, asses sing the potential 

impact of this novel technology on the computational 

efficiency of cardiac simulation can be important for the 

future of both cardiac modelling, and the modelling of 

other biological systems. 

 

4. CUDA 

Nvidia has recently released a parallel computing 

architecture called the Compute Unified Device 

Architecture, or CUDA. CUDA takes the form of a set of 

extensions to standard C/C++ to allow interaction 

between a computer’s CPU, and a CUDA enabled GPU. 

CUDA refers to these two co-processors as the host and 

the device respectively.  

Using CUDA, a user can allocate and access memory 

local to the device, copy data between the host and 

device, and offload parallel tasks to the GPU cores as a 

kernel [10]. 

The declaration of a CUDA kernel shares the same 

syntax as the declaration of a C++ function of type ‘void’. 

In addition to the normal user specified input arguments, 

each kernel contains two additional inputs corresponding 

to the number of thread blocks (usually given the 

identifier DimGrid), and threads within each block 

(DimBlocks) that the kernel acts upon. The value given 

by DimGrid multiplied by DimBlocks is therefore the 

total number of threads that each kernel acts upon. Each 

thread within a kernel initialises two variables at its 

inception, a thread ID corresponding to the position of the 

thread within a thread block, and a block ID 

corresponding to the position of its block within a grid of 

blocks. This identifier can be used to index array pointers, 

allowing each thread to act upon, and modify a different 

memory address. 

In order to provide a short comparison on the 

differences between CPU and GPU style code, a standard 

piece of CPU code for cardiac simulations is shown 

below. In this example, serial computation refers to the 

set of ordinary/partial differential equations used to 

simulate cell/tissue behavior, discussed earlier in 

Equation 1, and the Euler method used to solve them. 

1) Allocate memory space on the host; 

2) Initialize memory on the host; 

3) Resolve serial computation on the CPU; 

4) Print results. 

In this example, steps 1 and 2 are carried out only once 

at the start of the simulation, and step 4 only once at the 

end. Step 3 is carried out at every time step for the 

duration of the simulation. This means that for the 

purposes of computational efficiency, only step 3 is 

important. 

By contrast, the same code rewritten in CUDA is 

similar, but with a few added complications. 

1) Allocate memory space on the host; 

2) Allocate memory space on the device 

3) Initialize memory on the host; 

4) Copy data from host to device memory; 

5) Resolve parallel portions of code on GPU; 

6) Copy data from device to host memory; 

7) Resolve any serial computations on CPU; 

8) Print results. 

Similarly to the CPU code, the initialization steps 

(1,2,3 in this case), and final step (8) are only carried out 

once, but the computational portions  are carried out at 

every time step of the numerical integration of Equation 

(1). However, since any serial computation must be 
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carried out on the CPU and data on each device must be 

kept up to date after both the serial and parallel 

components, there are now four steps important for 

computational efficiency. 

The key to achieving a maximal speed increase using 

CUDA is therefore careful allocation of memory space to 

minimize memory overhead caused by steps 4 and 6, and 

especially an emphasis on minimizing serial operations in 

step 7. In order to minimize the effects of memory latency 

caused by steps 4 and 6, as little information was retained 

within the host memory as possible. All differential 

variables were held within the device memory, and in 

order to visualize the output, only the membrane 

potential, V was copied to the host memory, and this was 

only copied every millisecond of simulation time (200 

time steps). 

In order to obtain the best performance from a CUDA 

architecture, copying of data between the device and host 

memories must be kept to a minimum. However, as many 

common C++ functions (such as file input/output), and 

command line arguments must be carried out on the host, 

such functions cannot be avoided completely. 

 

5. Experimental validation 

The activation sequence simulated (Fig. 1) was 

compared with the respective experimental data under 

similar conditions [13]. The experimental data and the 

model show both a similar pattern and timing of 

activation. It should be noted that data from the the 

CUDA simulations on the CPU, and the C++ simulation 

on the CPU were identical. 

 

6. Results 

The same PC was used to evaluate both the C++ CPU 

and CUDA GPU based solutions. It was equipped with an 

Intel core i5 M450 CPU clocked at 2.40 GHz, 4.00GB of 

host RAM, and an Nvidia GT 330 clocked at 1.2 GHz, 

with 2.7GB of total graphics memory. 

As previously noted, it was found that both the CPU 

and GPU based solution produced identical ventricular 

activation sequences, and that these were in agreement 

with experimental data (Fig. 1). However, the time taken 

to simulate these sequences varied. On the CPU, the time 

taken to produce the desired result was measured to be 

20375s, and the time taken to achieve the same result on 

the GPU was 298s, a 68-fold speed increase (Fig. 2).  

In addition, the effect of increasing the number of cells 

within tissue was investigated. In our model, each thread 

within a kernel corresponds to one cell. By changing the 

number of cells within the geometry, we can therefore 

change the number of threads called within each kernel, 

and assess the effect of degree of parallelization on the 

speed of the process. As expected from a serial processor, 

 
Figure 1. Simulations of excitation wave propagation in the 
3D ventricular model solved on a GPU. The simulated 

ventricular activation sequence is shown (A) along with the 
respective experimental data (B). In both cases, the tissue 

activation time is color-coded according to the palette on the 
right. The initial stimulus application site is shown by an 

arrow. The panels in (C) show snap shots taken every 5ms of 

the excitation wave with an iso-surface of V = 0 mV. 

 

the CPU speed per cell stays consistent throughout, 

however, even with increasing numbers of parallel 

threads there is little effect on the time taken to resolve 

the computation on the GPU, resulting in a vast increase 

in speed (Fig. 3). 

 Figure 3 shows that ~10
3
 was the smallest number of 

cells where the possible speed increases given by a GPU 

become apparent. It is suggested that this number is an 

important baseline at which GPU computation becomes 

an attractive replacement for CPU simulation within the 

field of biophysically detailed cardiac modelling. 

 

7. Discussion 

We have developed a 3D computational model of rabbit 

ventricles, a numerical solver based on the novel CUDA 

architecture using GPU technology. We have shown that  
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Figure 2. Difference in computational time using a CPU and 
a GPU. Shown is the time taken to compute a single cycle of 

wave propagation through the ventricles – a ventricular 
activation sequence on both a CPU and GPU. 

 

Figure 3. Comparison in speed between the CPU and GPU 

while running simulations of a 3D cardiac with a varying 
number of cells. Speed is given as 1/time to compute 10

4
 

kernel executions. 
 

a current desktop PC with a commercial GPU provides an 

efficient environment for the large scale, complex 

biological simulations that until now, remain the domain 

of expensive HPC environments. We have shown that 10
3
 

threads is a minimum after which GPU computation is an 

effective alternative. With a sufficiently large number of 

threads, a 68-fold speedup can be achieved.  

The speed up observed was towards the higher end of 

the range expected by Nvidia, and of the same order as 

the 10x speed increase reported in solving Maxwell’s 

equations [11] and the 50x speed increases reported in the 

work on neural networks [12]. Such a large disparity in 

observed GPU speedups across different disciplines is 

due to a key limitation of GPU parallelization; the 

possible speed up is heavily dependent on the type of 

problem solved. However, as we have shown in the 

present study, biophysically detailed cardiac modelling is 

an ideal candidate for GPU computing. 
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