
Large Speed Increase Using Novel GPU Based Algorithms
to Simulate Cardiac Excitation Waves in 3D Rabbit Ventricles

Jonathan Higham, Oleg Aslanidi, Henggui Zhang

University of Manchester, Manchester, UK

Abstract

Large-scale biophysically detailed computer models of

the heart provide a useful tool to understand dynamics of

cardiac excitation and mechanisms underlying lethal

cardiac arrhythmias. However, high demanding of

intensive high performance computing environments

limits the practical application of such models.

This paper presents a novel use of a desktop personal

computer and the CUDA parallel computing architecture

for a highly efficient method of parallel simulation of a

3D ventricular model. We show that substantial speed

increases can be obtained using a desktop Graphical

Processing Unit (GPU) compared to a single desktop

Central Processing Unit (CPU), and that a single GPU

can be an effective substitute to large numbers of CPUs.

1. Introduction

Although a vast amount of experimental and clinical

data has been collected on the underlying ionic, cellular

and tissue substrates, mechanisms of lethal cardiac

arrhythmias arising from the functional interactions of

these aspects at the whole heart level still remain unclear.

Quantitative computer models of the heart integrating

multi-scale data provide a powerful tool to understand

arrhythmogenic mechanisms. The models allow detailed

studies into the complex dynamics of three-dimensional

(3D) spatio-temporal cardiac excitation waves in various

physiological and pathological conditions, across various

multi-physical scales [1-3]. However, the computational

costs associated with large-scale cardiac simulations on

3D tissue geometries increases proportionally with

increasing resolution (spatial and temporal), and with

increasing levels of detail (electrophysiological,

anatomical and mechanical) incorporated into the model.

In order to implement these complex cardiac models,

several parallel computing paradigms have been

developed using cutting edge High-Performance

Computing (HPC) facilities [4-6]. However, the reality

that a limited number of such HPC facilities exist makes

such paradigms both costly and inconvenient.

In this paper, we show that widely available Graphical

Processing Units (GPUs) can offer a cheap, convenient

alternative to large numbers of Central Processing Units

(CPUs), and can allow a substantial increase in the

computational speed of large-scale, high-resolution,

detailed simulations of cardiac excitation waves, even

with the computational environment offered by a single,

standard desktop PC.

2. Cardiac simulation

An anatomically accurate and biophysically detailed

model of a rabbit ventricle was developed. The geometry

of the rabbit ventricles was extracted from a whole heart

DT-MRI dataset [7], including anisotropic fiber

orientations. Atrial tissue and all visible noise (such as

blood filling the right ventricular cavity) were removed.

The spatial resolution of the resultant 3D ventricular

geometry was 200µm in each direction. The total

dimensions were 128 x 120 x 114.

Both ventricles were then segmented, the left ventricle

into epicardial (Epi), mid-myocardial (M) and

endocardial (Endo) regions, with Endo cells forming a

layer around the cavity wall, Epi cells forming the

external surface layer, and M cells in between; and the

right ventricle into Epi and Endo cells. Previously

developed cellular models for the ventricular Endo, M

and Epi cells [8] were incorporated into the 3D geometry

to simulate the electrical activity of the ventricles .

The mono-domain equation [1-3] was used to describe

the electrical excitation dynamics in the tissue:

m

ion

C

I
V

t

V





)(D

(1)

Here V is the membrane potential (mV), t is time (s), D

is the tensor of diffusion coefficients (mm
2
ms

-1
) that

characterize the electrotonic spread of voltage via the gap

junctions, Iion is the total ionic current (pA), and Cm is the

membrane capacitance (pF). Anisotropy was achieved by

setting different diffusion coefficients in each direction;

D║, D┴1, and D┴2 were set to 0.3, 0.075 and 0.0083

mm
2
/ms respectively.

ISSN 0276-6574 9 Computing in Cardiology 2011;38:9-12.

Equation (1) was solved by using the finite difference

approach based on the forward Euler’s method with a

spatial step of 0.2mm and a time step of 0.005ms.

3. Graphical processing units

The GPU is a piece of specialized hardware resident

within most personal computers for the purpose of

graphical rendering. A Modern GPU is a highly data

parallel processor, containing several hundreds of stream

processors running in a Single Instruction Multiple Data

(SIMD) model. The SIMD model reduces the time

required for computation by forcing the condition that the

same operation is carried out on each thread. SIMD

launches a series of operations called the kernel, which

carries out the same operation on thousands of threads

with consequently very little memory overhead. This

allows near-simultaneous calculation of many

independent floating point operations; however it also

means that the GPU architecture is suitable only for

independent, data-parallel computations.

The electrophysiological activity in cardiac tissue can

be separated into two components: one the electrical

membrane current due to ion channels across each cell

wall opening/closing; an independent process relative to

other cells and the other is the localised diffusion of

membrane potential between cells due to the intracellular

coupling; a process dependent only on each cell and its

closest neighbours. This independent nature of cardiac

modelling makes it an ideal candidate for GPU use.

In order to take advantage of the drastic increase of

GPU power in recent years, many new hardware and

software architectures for GPU programming have been

created [9-10], and used for a variety of scientific

applications [11-12]. However, the increase in

computational speed for such a highly parallelized

processor has a high dependence on software

parallelisation, especially under SIMD architecture,

where a similar amount of time is required to run an

operation on one thread, or on thousands of threads. A

variety of speed increases in the range 10x-150x have

been reported by the aforementioned scientific

applications, but the effects of GPU parallelization on

computational tasks within the field of cardiac modelling

have not been studied. Therefore, asses sing the potential

impact of this novel technology on the computational

efficiency of cardiac simulation can be important for the

future of both cardiac modelling, and the modelling of

other biological systems.

4. CUDA

Nvidia has recently released a parallel computing

architecture called the Compute Unified Device

Architecture, or CUDA. CUDA takes the form of a set of

extensions to standard C/C++ to allow interaction

between a computer’s CPU, and a CUDA enabled GPU.

CUDA refers to these two co-processors as the host and

the device respectively.

Using CUDA, a user can allocate and access memory

local to the device, copy data between the host and

device, and offload parallel tasks to the GPU cores as a

kernel [10].

The declaration of a CUDA kernel shares the same

syntax as the declaration of a C++ function of type ‘void’.

In addition to the normal user specified input arguments,

each kernel contains two additional inputs corresponding

to the number of thread blocks (usually given the

identifier DimGrid), and threads within each block

(DimBlocks) that the kernel acts upon. The value given

by DimGrid multiplied by DimBlocks is therefore the

total number of threads that each kernel acts upon. Each

thread within a kernel initialises two variables at its

inception, a thread ID corresponding to the position of the

thread within a thread block, and a block ID

corresponding to the position of its block within a grid of

blocks. This identifier can be used to index array pointers,

allowing each thread to act upon, and modify a different

memory address.

In order to provide a short comparison on the

differences between CPU and GPU style code, a standard

piece of CPU code for cardiac simulations is shown

below. In this example, serial computation refers to the

set of ordinary/partial differential equations used to

simulate cell/tissue behavior, discussed earlier in

Equation 1, and the Euler method used to solve them.

1) Allocate memory space on the host;

2) Initialize memory on the host;

3) Resolve serial computation on the CPU;

4) Print results.

In this example, steps 1 and 2 are carried out only once

at the start of the simulation, and step 4 only once at the

end. Step 3 is carried out at every time step for the

duration of the simulation. This means that for the

purposes of computational efficiency, only step 3 is

important.

By contrast, the same code rewritten in CUDA is

similar, but with a few added complications.

1) Allocate memory space on the host;

2) Allocate memory space on the device

3) Initialize memory on the host;

4) Copy data from host to device memory;

5) Resolve parallel portions of code on GPU;

6) Copy data from device to host memory;

7) Resolve any serial computations on CPU;

8) Print results.

Similarly to the CPU code, the initialization steps

(1,2,3 in this case), and final step (8) are only carried out

once, but the computational portions are carried out at

every time step of the numerical integration of Equation

(1). However, since any serial computation must be

10

carried out on the CPU and data on each device must be

kept up to date after both the serial and parallel

components, there are now four steps important for

computational efficiency.

The key to achieving a maximal speed increase using

CUDA is therefore careful allocation of memory space to

minimize memory overhead caused by steps 4 and 6, and

especially an emphasis on minimizing serial operations in

step 7. In order to minimize the effects of memory latency

caused by steps 4 and 6, as little information was retained

within the host memory as possible. All differential

variables were held within the device memory, and in

order to visualize the output, only the membrane

potential, V was copied to the host memory, and this was

only copied every millisecond of simulation time (200

time steps).

In order to obtain the best performance from a CUDA

architecture, copying of data between the device and host

memories must be kept to a minimum. However, as many

common C++ functions (such as file input/output), and

command line arguments must be carried out on the host,

such functions cannot be avoided completely.

5. Experimental validation

The activation sequence simulated (Fig. 1) was

compared with the respective experimental data under

similar conditions [13]. The experimental data and the

model show both a similar pattern and timing of

activation. It should be noted that data from the the

CUDA simulations on the CPU, and the C++ simulation

on the CPU were identical.

6. Results

The same PC was used to evaluate both the C++ CPU

and CUDA GPU based solutions. It was equipped with an

Intel core i5 M450 CPU clocked at 2.40 GHz, 4.00GB of

host RAM, and an Nvidia GT 330 clocked at 1.2 GHz,

with 2.7GB of total graphics memory.

As previously noted, it was found that both the CPU

and GPU based solution produced identical ventricular

activation sequences, and that these were in agreement

with experimental data (Fig. 1). However, the time taken

to simulate these sequences varied. On the CPU, the time

taken to produce the desired result was measured to be

20375s, and the time taken to achieve the same result on

the GPU was 298s, a 68-fold speed increase (Fig. 2).

In addition, the effect of increasing the number of cells

within tissue was investigated. In our model, each thread

within a kernel corresponds to one cell. By changing the

number of cells within the geometry, we can therefore

change the number of threads called within each kernel,

and assess the effect of degree of parallelization on the

speed of the process. As expected from a serial processor,

Figure 1. Simulations of excitation wave propagation in the
3D ventricular model solved on a GPU. The simulated

ventricular activation sequence is shown (A) along with the
respective experimental data (B). In both cases, the tissue

activation time is color-coded according to the palette on the
right. The initial stimulus application site is shown by an

arrow. The panels in (C) show snap shots taken every 5ms of

the excitation wave with an iso-surface of V = 0 mV.

the CPU speed per cell stays consistent throughout,

however, even with increasing numbers of parallel

threads there is little effect on the time taken to resolve

the computation on the GPU, resulting in a vast increase

in speed (Fig. 3).

 Figure 3 shows that ~10
3
 was the smallest number of

cells where the possible speed increases given by a GPU

become apparent. It is suggested that this number is an

important baseline at which GPU computation becomes

an attractive replacement for CPU simulation within the

field of biophysically detailed cardiac modelling.

7. Discussion

We have developed a 3D computational model of rabbit

ventricles, a numerical solver based on the novel CUDA

architecture using GPU technology. We have shown that

11

Figure 2. Difference in computational time using a CPU and
a GPU. Shown is the time taken to compute a single cycle of

wave propagation through the ventricles – a ventricular
activation sequence on both a CPU and GPU.

Figure 3. Comparison in speed between the CPU and GPU

while running simulations of a 3D cardiac with a varying
number of cells. Speed is given as 1/time to compute 10

4

kernel executions.

a current desktop PC with a commercial GPU provides an

efficient environment for the large scale, complex

biological simulations that until now, remain the domain

of expensive HPC environments. We have shown that 10
3

threads is a minimum after which GPU computation is an

effective alternative. With a sufficiently large number of

threads, a 68-fold speedup can be achieved.

The speed up observed was towards the higher end of

the range expected by Nvidia, and of the same order as

the 10x speed increase reported in solving Maxwell’s

equations [11] and the 50x speed increases reported in the

work on neural networks [12]. Such a large disparity in

observed GPU speedups across different disciplines is

due to a key limitation of GPU parallelization; the

possible speed up is heavily dependent on the type of

problem solved. However, as we have shown in the

present study, biophysically detailed cardiac modelling is

an ideal candidate for GPU computing.

References

[1] Rudy Y. From genome to physiome: integrative models of

cardiac excitation. Ann. Biomed. Eng., 2000;28:945-950.
[2] Noble D. Modelling the heart – from genes to cells to the

whole organ. Science 2002;295:1678-1682.

[3] Boyett MR, Li J, Inada S, Dobrzynski H, Schneider JE,

Holden AV, Zhang H. Imaging the heart: computer 3-

dimensional anatomic models of the heart. J. Electrocardiol
2005;38:113-120.

[4] Reumann M, Fitch BG, Rayshubskiy A, Keller DU, Weiss

DL, Seemann G, Dossel O, Pitman MC, Rice JJ. Strong

scaling and speedup on up to 16,384 processors in cardiac

electro-mechanical simulations. Annual International Conf
IEEE Eng. Med. Biol. Soc. 2009;2795-2798.

[5] Pitt-Francis J, Gamy A, Gavaghan D. Enabling computer

models of the heart for high-performance computers and

the grid. Phil. Trans. R, Soc. A, 2006;364:1501-1526.

[6] Bordas R, Carpentieri B, Fotia G, Maggio F, Nobes R, Pitt -
Francis J, Southern J. Simulation of cardiac

electrophysiology on next generation high performance

computers. Phil. Trans. A 2009;367:1951-1969.

[7] Benson AP, Gilbert SH, Aslanidi OV, Zhang H, Boyett

MR, Dobrzynski H, Holden AV 0.2 mm cubic voxel
reconstruction of a rabbit heart geometry and architecture

using diffusion tensor magnetic resonance imaging. Proc.

Physiol. Soc., 2008;10:PC11.

[8] Aslanidi OV, Sleiman RN, Boyett MR, Hancox JC, Zhang
H. Ionic Mechanisms for electrical heterogeneity between

rabbit Purkinje fiber and ventricular cells. Biophys J.

1998;98:2420-2431.

[9] Buck I, Foley T, Horn D, Sugarman J, Fatahalian K,

Houston M, Hanrahan P. Brook for GPUs: Stream
computing on graphics hardware. ACM Transactions on

graphics, 2004;23:777-786.

[10] Nvidia. CUDA Programming Guide.

http://developer.nvidia.com/objectcuda_1_0.html 2007

[11] Dosopoulos S, Jin-Fa L. Discontinuous Galerkin Time
Domain for Maxwell’s equations on GPUs. 2010 URSI

International Symposium on Electromagnetic Theory

2010:989-999.

[12] Guzhya A, Dolenko S, Persiantsev I. Multifold

Acceleration of Neural Network Computations using GPU.
Artificial Neural Networks – ICANN 2009;5768:380-373.

[13] Han C, Liu Z, Zhang X, Pogwizd S, He B. Noninvasive

three-dimensional cardiac activation imaging from body

surface potential maps: a computational and experimental

study on a rabbit model. IEEE Trans. Med. Imaging
2008;27:622-1630.

Address for correspondence

Henggui Zhang.

Biological Physics Group, School of Physics and Astronomy,

University of Manchester, Schuster Building, Brunswick Street,

Manchester, M13 9PL, UK.
E-mail: henggui.zhang@manchester.ac.uk.

12

