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Abstract

This paper presents a novel algorithm for the analysis of
heart motion from tagged magnetic resonance images. The
displacement is estimated from the monogenic phase and
is therefore robust to possible variations of the local image
energy. A local affine model accounts for the typical con-
traction, torsion and shear of myocardial tissue. An effec-
tive B-spline multiresolution strategy automatically selects
the scale returning the most consistent velocity estimate.
The multiresolution strategy together with a least-squares
estimate of the monogenic orientation make the algorithm
robust under image noise. Results on realistic simulated
images show the proposed algorithm to return more accu-
rate velocity estimates than the SinMod algorithm, itself
shown more accurate and robust than the state-of-the-art
Harp method.

1. Introduction

Tagged MRI (tMRI)is currently the gold-standard tech-
nique for quantification of myocardial contractility [1, 2].
With this technique, cardiac tissue is marked with magnet-
ically saturated tagging lines or grids that deform with the
underlying tissue during the cardiac cycle, thus providing
details on the myocardial motion.

With time elapsing, the grid loses contrast and sharp-
ness. This is why state-of-the-art techniques for motion
estimation from tMRI sequences exploit the image phase
rather than the less trustworthy pixel intensity. The pop-
ular algorithms HARP (harmonic phase) [1] and SinMod
(sine-wave modeling) [2] belong to this family of methods.
In particular, SinMod was shown to outperform HARP in
[1]. Both methods make use of a directional bandpass filter
bank to build first-order harmonic images. From the latter,
the displacement is estimated with Fourier-based disparity
measures. The limit of directional filtering is that it as-
sumes tags direction and spacing to be constant on all the
sequence while, in practice, these values may change lo-
cally due to the heart deformation. In this context, we pro-

pose here a novel motion estimation algorithm based on
a more sophisticated and flexible image processing tool,
calledmonogenic signal.

The monogenic signal extends the analytic signal con-
cept to multiple dimensions [3]. Locally, it decomposes the
image into the structural features ofphaseandorientation
and in its localamplitude. These features are computed by
locally approximating the image as a 1D monochromatic
wave propagating in the direction of maximum image en-
ergy variation. Interestingly, due to the periodic patterns,
the monochromatic wave model provides a realistic repre-
sentation for the structure of tMRI images. This makes the
monogenic signal an excellent framework for developing
techniques dedicated to their analysis. To our knowledge
this is the first study investigating this possibility.

Our algorithm computes the displacement by tracking
variations in the monogenic phase. The computation is
made locally on a spatially moving window. A local affine
model accounts for the typical contraction, torsion and
shear components of myocardial tissue. An effective B-
spline multiresolution strategy automatically selects the
scale returning the most consistent velocity estimate. The
multiscale window choice together with an unconventional
least-squares orientation estimate improves the robustness
under image noise. Besides that the employment of the
phase reduces the sensitivity to brightness variations.

The paper proceeds as follows. In Section 2 the mono-
genic signal is briefly summarized. Section 3 describes
the proposed motion estimation algorithm. In Section 4
implementation details are discussed. Section 5 assesses
the performance of the proposed algorithm and compares
it with SinMod. Concluding remarks are left to Section 6.

2. Monogenic signal analysis of tagged
MRI images

The monogenic signalprovides an extension of the stan-
dard analytic signal for 2D gray-scale images. The adopted
image model is [4]:

I(x) = A(x) cos(ϕ(x)), (1)
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wherex = [x, y] is the spatial coordinate vector,A(x) is
the local amplitudeandϕ(x) is thelocal phase. Addition-
ally, intrinsic dimensionality one is assumed,i.e., the local
variations ofI are concentrated along a single direction,
defined by thelocal orientationθ(x). Amplitude, phase
and orientation are computed from the responses to three
2D spherical quadrature filters (SQFs) [4] obtained like-
wise: oneevenrotation invariant bandpassbe(x) filter and
two oddbandpassfiltersbo1(x) andbo2(x). The odd filters
arecomputed from the Riesz transform of the even filter,
see [3, 4] for details. Several SQFs families exist in the
literature. Here, the difference of Poisson (DoP) kernel is
adopted [4].

Monogenic features are obtained as:

θ(x) = arctan

(
q2(x)
q1(x)

)

, (2)

ϕ(x) = arctan

(
|q(x)|
p(x)

)

, (3)

and A(x) =
√

p2(x) + |q(x)|2, where p(x) = (I ∗
be)(x), q1(x) = (I∗bo1)(x), q2(x) = (I∗bo2)(x), q(x) =
[q1(x), q2(x)]T and “∗” denotes 2D convolution. Mono-
genic phase and orientation can be conveniently combined
in thephase vectorr(x) = [r1(x), r2(x)] = ϕ(x) ∙ n(x),
with n(x) = [cos(θ(x)), sin(θ(x))]T [4].

The local frequency, defined as the derivative of the
phase alongn, can also be computed as [4]:

f , (∇ϕ)T ∙ n =
p∇T q − qT∇p

p2 + |q|2
, (4)

where∇ = [∂x, ∂y]T . Dependency onx is implied.
In this study, as recommended in [5], we replace the

classical point-wise estimate ofθ (2), with a robust least-
squares estimate. The least-squares orientation estimate is
obtained by maximizing the directional Hilbert transform
[5] averaged over a local neighborhoodvσ. The maximiza-
tion problemis solved by the eigenvector associated with
the largest eigenvalue of the2 × 2 matrix T(x), with en-
tries:

[T(x)]nm =
∫

R2

vσ(x′ − x)qn(x′)qm(x′)dx′, (5)

with n,m = {1, 2}. The matrixT can be assimilated to a
Riesz-transform counterpart of the standard structure ten-
sor. See [5] for details. Here,vσ corresponds to aGaussian
kernel with varianceσ2.

In the caseof tagged MRI images, the commonly
adopted image model is [1,2]:

I(x) = A(x) cos(ωT
0 x) (6)

whereA(x) is theimage without the tag pattern andω0 =
ω0n, with n the tagsdirectionandω0 is relatedto the tags
spacingl0 by ω0 = 2π/l0.
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Figure 1. (a)tMRI image with horizontal tags. The com-
puted orientation is represented as green arrows. The blue
segment defines a 1D neighborhood selected by the local
orientation. (b) The blue line shows the image intensity
profile along the blue segment of figure (a). The local tags
spacing is of 12 pixels, very well estimated by the mono-
genic frequency (l = 1/f = 11.72 pixels).

The tMRI image model (6) is closely related to the
monogenic image model in (1). In particular, it directly
satisfies the assumption of local dimensionality one. This
allows to establish a direct correspondence between the
previously introduced monogenic features and the geo-
metrical properties of tMRI images. Namely, monogenic
orientation computes the local tags direction while mono-
genic frequency estimates the local tags spacing (cf. Fig.
1). These structural features will be exploited in the deriva-
tion of a robust motion estimation algorithm in the next
section.

3. Proposedmotion estimation algorithm

Following [4], we compute displacementd = [d1, d2]
between twoframes assuming the conservation of the im-
age phase over time,i.e. ϕ(x, t +1) = ϕ(x−d, t). Since,
according to (6),ϕ(x, t) = ω0nT x, the equation forthe
displacement becomes−ϕt(x) = ω0nT d, where we have
calledϕt(x) = ϕ(x, t + 1) − ϕ(x, t). By pre-multiplying
both terms byn, we obtain the phase conservation ex-
pressed in terms of the phase vectorr(x) [4]. Then, as-
suming all points translate of the same quantityd0 within
a local window w centered inx0 = [x0, y0], the following
linearsystem of equations is obtained:

〈J〉w d0 = −〈rt〉w , J = ω0nnT (7)

where 〈v〉w denotes the weightedaverage
∫
Ω

w(x −
x0)v(x)dx. In (7),ω0 = 2πf , wheref is computed as in
(4) andn is defined by the monogenic orientationθ. The
termrt is computed fromthe SQFs responses as in [4]:

rt =
p1q2 − q1p2

|p1q2 − q1p2|
arctan

(
|p1q2 − q1p2|
p1p2 + qT

1 q2

)

(8)

where subscripts1 and2 denote thetime instantt andt+1
respectively.

686



We conclude thissection by noting that the maximum
displacement that our algorithm can compute is equal to
one half the tags spacingl0/2. Beyond thatvalue, due to
the periodicity of the pattern, the velocity cannot be deter-
mined unambiguously.

3.1. Affine model

Clearly, thesimple translation model employed by Fels-
berg [4] is too restrictive in a general context. Also, its
validity is heavily dependent on the choice of the size
of w. The solution we propose is to replace the con-
stant motion assumption with an affine model. A part of
translations, this accounts for rotation, expansion, com-
pression and shear. Considering a windoww centered at
(x0, y0) = (0, 0), theaffine model is written:

d(x) = B(x)u, B =

[
1 0 x y 0 0
0 1 0 0 x y

]

, (9)

whereu = [d10, d20, d1x, d1y, d2x, d2y]T is the new un-
known vector:d10 andd20 correspond to thetranslation of
the window center anddik = ∂kdi.

Plugging (9) into(7) leads to an underdetermined sys-
tem of equations. The solution is then obtained by pre-
multiplying both terms byBT , i.e. 〈M〉w u = 〈b〉w, with
M = BT JB andb = −BT rt.

3.2. Multiscale choiceof window size

The choice ofthe window size is a tedious issue con-
nected with local techniques: the assumed motion model
(translational or affine) may not hold when the window is
too big, otherwise, the adoption of an excessively small
window may result in the well knownaperture problem.
To circumvent this issue, in [6] S̈uhling et al. proposed
a multiscale strategy for locally choosing the most con-
sistent window size. This is based on the possibility of
computing the image moments,i.e., the entries of the sys-
tem matrixM and the vectorb, at multiple scales, by us-
ing an efficient B-splinecoarse-to-finestrategy. In par-
ticular, they are obtained from window functionsw that
are progressively scaled and subsampled by a factor 2 in
each dimension. More precisely, at scalej, the window
wj(x−x0) = w((x− 2jx0)/2j) is employed,wherew is
written as the separable product of two B-spline functions.

By doing so, at each scaleJf ≤ j ≤ Jc (Jf ≥ 0) a
solutionuj can be computed.Among the scales consid-
ered, theuj producing the smallestresidual error||Muj −
b||`2/|w|`1 is retained asthe final displacement estimate.
Whenever necessary, bi-cubic interpolation is employed to
obtain a dense motion field. With this strategy, the scale
providing the most consistent motion estimate is selected.

Table 1. Endpoint Error (μ ± σ) in pixels on 8 simulated
sequences.

SEQUENCE ALGORITHM
Proposed SinMod

D30 0.152± 0.121 0.215± 0.145
D30F20 0.082± 0.072 0.128± 0.112
D30R10T01P0 0.264± 0.149 0.363± 0.199
D30R20T01P0 0.462± 0.239 0.970± 1.129
D30R20T01P0F20 0.209± 0.139 0.344± 0.224
R20F20 0.244± 0.164 0.416± 0.264
R10 0.161± 0.087 0.220± 0.090
R20 0.104± 0.072 0.174± 0.122

3.3. Iterative displacement refinement

The hypothesisof small displacements employed in dif-
ferential techniques may be inadequate whenever the dis-
placement is substantial or the image intensity profile is
non-linear. A possible way to deal with this limitation is to
implement a form of Gauss-Newton optimization: the cur-
rent estimate is used to undo the motion, and then the esti-
mator is reapplied to the warped images to find the residual
displacement [7]. When applied iteratively, this procedure
can improve the estimation accuracy considerably. We em-
ployed the aforementioned refinement scheme in the algo-
rithm presented.

4. Implementation details

The number ofiterations of the refinement scheme of
Section 3.3 was 3 in all the experiments. The center fre-
quency of the SQFs was chosen close to the image first har-
monic, given by1/l0 (l0 ≈ 6 pixels in our experiments).
The multiscale window choice was implemented by con-
sidering fifth-order B-splines and scalesj = {2, 3, 4, 5}.
A value σ = 2 was used for the robust computation
of the monogenic orientation. The proposed algorithm
has been implemented in MATLAB (R2011b, The Math-
Works, Natick, MA).

5. Results

The algorithm was tested on realistic simulated cardiac
tMRI sequences with grid patterns for which the bench-
mark motion was known and the performance was com-
pared to the one of SinMod [2]. Synthetic sequences were
generated with the ASSESS software [8]. The characteris-
tic tag-fading effect, not considered in ASSESS, was also
taken into account in this study. The effect was obtained
by adjusting the image’s histogram limits on each frame so
as to match those of a real sequence taken as a template.

The estimation error was assessed with the endpoint er-
ror EE = ||d−d̄||`2, measured inpixels, whered denotes
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Figure 2. Average endpoint error on R20F20.

(a)

Figure 3. Performancefor decreasing values of SNR.

the estimated displacement andd̄ the benchmark displace-
ment.

The results obtained on 8 simulated sequences are sum-
marized in Table 1. For each algorithm the parameters
were optimized to return the smallest average error on
the sequenceD30R20T01P0F20. The name of each se-
quence reflects the values of the parameters used for its
generation, namely: contraction/expansion (D), rotation
(R), thickening (T), frame-rate (F) and healthy (P0) or
pathological (P3) state. Greater detail on their meaning can
be found in [8]. These results show that the proposed algo-
rithm systematically returns the estimate with the smallest
mean value and variance, which is a proof of precision and
reliability.

The algorithm performance on each frame of a simu-
lated sequence is reported in Fig. 2. The figure shows that
the obtained estimates are constantly more precise than the
ones returned by SinMod. The behavior is similar on all
the considered sequences.

The sensitivity to noise was also evaluated. To this end,
we contaminated the frames of sequence R20F20 with ad-
ditive Rician noise [9]. Fig. 3 reports the endpoint er-
ror variation for decreasing values of SNR. The results are
based on 15 independent noise realizations. These results
show that the performance of the proposed algorithm re-
mains virtually unchanged. The robustness against noise
stems from two factors: the multiscale window choice and
the robust monogenic orientation. The first guarantees that
the integration scale is optimized locally so as to minimize

the noise effect on the velocity determination, while the
second ensures a more robust computation of the mono-
genic features.

The computational time for the optimal parameters set
was of 0.55 s/image (image size, 256×256 pixels2) for the
adopted unoptimizedMATLAB implementation.

6. Discussions andconclusion

We have described a novel algorithm for the analysis of
heart motion from tMRI images. On considered data, the
algorithm has been shown to be more accurate than the
recent SinMod algorithm.

We conclude by noting that the model (6) is perfectly
suited for line-tags. In the case of the grid-tags, a sec-
ond wave perpendicular to the first should be included in
the image model. This would suggest investigating the use
of 2D extensions of the monogenic signal as the one in
[10]. Nonetheless, the results presented here show that,
even in the most common grid-tag case, the monogenic-
phase-based algorithm presented still produces relevant es-
timates.
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