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Abstract 

A new ECG baseline removal method is presented in 
this paper. This method is based on the Savitzky-Golay 
polynomial smoothing filter. Since this filter is defined in 
the time domain, it has the advantage of following the 
trend of the baseline wander. The results from this 
method are compared to the cubic spline method and a 
heart rate adaptive high-pass filter. The comparison 
shows that the SG baseline filter has comparable 
performance to these two other established methods.  This 
new method is simple, and does not require extra 
knowledge about the ECG, such as isoelectric points 
required by the cubic spline method or the heart rate 
required by the high-pass filter. Thus it is more suitable 
for implementation in ECG monitoring systems 

 
 

1. Introduction 

Baseline variation, as shown in Fig. 1, is a major type 
of noise in electrocardiogram (ECG) signals. Baseline 
variation is related to impedance variation between the 
recording electrode and the skin and it is often due to 
respiration or other body movement.  
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Fig 1. ECG signal with baseline variation caused by respiration. 

 
 
Baseline interference within the ECG is a low 

frequency signal below 0.8Hz [1], while the frequency of 
the heart rhythm signal is usually above 0.05Hz [1]. Thus, 

the frequency band of the baseline noise overlaps with the 
interested ECG signal and therefore a simple high-pass 
filter is not sufficient for removing baseline interference. 
There are a variety of methods for baseline removal from 
ECG, including high-pass filtering, adaptive filtering, 
wavelets, time-frequency analysis, curve fitting, etc. The 
most commonly used approach is the cubic spline method 
[2]. A cubic spline is fitted on the isoelectric reference 
points to estimate the baseline, which is then subtracted 
from the original ECG to produce the baseline removed 
signal. The cubic spline method is prone to error in the 
calculation of the isoelectric reference points, especially 
in the presence of noise [1]. 

The simplest baseline removal approach is to use a 
high-pass filter. However, since the baseline is a type of 
in-band noise, it is hard to set a cut-off frequency that 
completely separates the ECG signal from the baseline. 
Using a low cutoff frequency will result in a filter that is 
unable to completely remove the baseline interference, 
while using a high cutoff frequency will result in a filter 
that distorts the ST segment. Adapting the cutoff 
frequency using the patient’s current heart rate improves 
the performance of a high pass filter baseline removal 
technique [3]. According to Fourier theory, the frequency 
spectrum of a periodic signal is non-zero only on the base 
frequency and harmonics. This means that if the period is 
T, the lowest frequency is 1/T. An ideal ECG, which has 
constant heart rate and identical morphology for each 
heart beat, can be treated as a periodic signal, so the 
lowest frequency is HeartRate/60 (Hz). If one sets the 
cutoff frequency to this value, the low frequency noise 
can be removed without affecting the ECG. This 
approach works very well on high heart rate ECG, but 
when the heart rate is low, in which case the cutoff 
frequency is low, it may not completely remove the 
baseline or distort the ST segment. This method also adds 
system complexity and margin for error that may not be 
ideal for some real-time patient monitoring systems.   

A new approach for baseline removal from the ECG is 
proposed in this paper. It is derived based on the 
Savitzky-Golay (SG) filter, a least squares smoothing 
filter [4]. It is used in this paper to estimate the baseline, 
which is then subtracted from the original ECG to 
produce the baseline removed signal. 
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2. Method 

In this section we introduce the SG filter and provide 
details of the baseline removal technique using this filter. 
The SG filter is a polynomial smoothing filter [4]. Unlike 
conventional filter design techniques, which define 
properties in the frequency domain, and then translate to 
the time domain, the SG filters are defined directly in the 
time domain.  
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Fig. 2. Local polynomial fit of the SG filter. The central point is 
always indexed as 0 with the window sliding through the signal.   
 

The SG filter determines the smoothed value for each 
data point by performing a local polynomial fit in a 
window. The polynomial function is defined as 
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where M is the polynomial order, n is the independent 

variable, a0, a1, …, aM are polynomial coefficients. As 
shown in Figure 2, if the input signal is x(i), the window 
length is 2*N+1, then a least squares polynomial fit 
centered at the ith sample can be expressed as a matrix 
equation BA=X, namely, 
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Its lease-squares solution is  
( ) XBBBA TT 1−

= .                                                       (3) 
The smoothed value of the ith sample, denoted as y(i), 

can then be calculated as 
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Eq. (4) indicates that the smoothed value is determined 
by a0 only. According to Eq. (3), a0 is the inner product 
between the first row in  ( ) TT BBB 1−  and X. Eq. (2) 
indicates that the matrix B is completely determined by 
the window size, 2*N+1, and the polynomial order M, so 
( ) TT BBB 1−  is known once these two parameters are 
known. Let the first row in ( ) TT BBB 1−  
be ( ) ( ) ( ) ( ) ( )[ ]NhhhhNh  101−− , then y(i) 

can be written as 
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The first row in ( ) TT BBB 1−  is symmetric with respect 
to the central point, n=0, so Eq. (5) can be rewritten as 
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The right hand side of Eq. (6) is the convolution between 
h(n) and x(n). Therefore, the output of the SG filter is the 
input filtered by an FIR filter that is determined by the 
window size and the polynomial order. Since the FIR 
filter is symmetric, the SG filter has a linear phase 
response and a delay of half the window size.  

One of the key features of the SG filter is that it can be 
designed to handle edge effects gracefully; however, this 
is beyond the scope of this paper.  

Figure 3 shows the flowchart of the baseline removal 
method based on the SG filter. The ECG signal is first 
low-pass filtered to remove most of the interested ECG 
frequency components. A symmetric FIR filter with 100 
taps is used to avoid distortion. The cutoff frequency is 
0.8Hz so all baseline frequency components are preserved 
in the output. A SG filter is then applied to extract the 
baseline and the baseline is subtracted from the delayed 
original signal. The output is the baseline removed ECG.  

FIR Low-Pass Filter
(CutOff = 0.8Hz)

Savitzky-Golay Filter

500Hz ECG

Delay

∑
−

+

500Hz ECG after 
baseline removal  

Fig. 3. Flowchart of the SG baseline filter.  
 
The low-pass FIR filter is designed to remove sharp 

QRS spikes so the SG filter polynomial fit may provide 
proper estimation of the baseline. The SG filter is a 
special smoothing filter with the cutoff frequency 
determined by the window length and the polynomial 
order. Long window length and low polynomial order 
results in a low cutoff frequency. With a 500Hz sampling 
rate, a window size of 2*250+1 and polynomial order of 2 
this SG filter introduces a 500ms delay.  

Based on Eq. (6), the computation complexity of a SG 
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filter with window size 2*N+1 is the same as a FIR filter 
with 2*N taps, so the computation complexity of the filter 
in Fig. 3 is equal to a FIR filter with 500 taps. Such a 
large number of taps is not realistic for a real time system.  

Fig. 4 shows another approach that focuses on reducing 
the computation load. The ECG signal is low-pass filtered 
by an anti-aliasing filter, then down-sampled to 12.5Hz. 
The SG filter is then applied to extract the baseline and 
the baseline is up-sampled to 500Hz by linear 
interpolation. It is finally subtracted from the delayed 
original signal. The output is the baseline removed ECG. 
With this approach, the SG filter is applied to 12.5Hz, so 
the window size can be reduced to 2*6+1 and cover the 
same window as Fig. 3. The computation load is reduced 
to a FIR filter with 12 taps, the polynomial order is still 
set to 2 and the delay is 480ms delay. All of which make 
it suitable for a real time monitoring system.  

Anti-aliasing Filter
IIR

↓40

Savitzky-Golay Filter

↑40
(Linear interpolation)

500Hz ECG

Delay

∑
−

+

500Hz ECG after 
baseline removal 

12.5Hz

 
Fig. 4. Flowchart of the SG baseline filter with down-sampling 
and up-sampling stages.   
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Fig. 5. Frequency responses of SG filters used in Fig. 3 and 4. 

Fig. 5 compares the SG filters used in Fig. 3 and Fig. 
4. The frequency responses are very similar; therefore, 
Fig. 3 is used to generate the results in this paper 

 
3. Results 

Fig. 6 illustrates the performance of the SG baseline 
filter. The original ECG contains baseline wander caused 
by respiration. The low-pass filtered signal shows that the 
QRS spikes are mostly removed but there are still P and T 
waves. The SG filtered signal shows the estimated 
baseline. The output signal shows the ECG after baseline 
removal with no noticeable baseline wander. 

 

Original

Low-Pass

S-G Filter

Output

 
Fig. 6. Performance of SG baseline filter on ECG with baseline. 
Duration is 4s and average R-wave peak amplitude is 0.9mV. 

 
Another way to evaluate the baseline removal quality is 

to cut the ECG waveform into one-heart-beat segments, 
and average the R-wave aligned segments [2]. Since the 
baseline noise is usually not synchronized to the heart 
rate, the averaged segment is the baseline-free ECG. Fig 7 
shows the average performance of Fig. 6 using forty nine 
beats. Note that the averaged waveforms are very similar, 
the difference is close to a straight line.  

 

   

Original ECG

   

After Baseline

Difference

 
Fig. 7. Average performance of the SG baseline filter on ECG 
with baseline. 

 
Figure 8 illustrates the performance of the SG baseline 

filter on an ECG without baseline. The averaged 
performance is given in Fig. 9. Note that the baseline 
estimation from the SG filter is close to a straight line, 
and the output waveform is identical to the original input.  
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Fig. 8. Performance of SG baseline filter on an ECG without 

baseline. Duration is 4s and R-wave peak amplitude is 0.2mV. 
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Fig. 9. Performance of SG baseline filter on ECG without 
baseline. 
 

The results from the SG baseline filter are compared to 
the cubic spline method and the high-pass filter with the 
cutoff frequency adapted to heart rate. Figure 10 and Fig. 
11 show the comparison of these three methods, with Fig. 
10 for respiration artifact, and Fig. 11 for motion artifact. 
Note that the performances of these methods are 
comparable. Similar results have been observed on the 
ECG data collected from 20 patients. 
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Fig. 10. Performance comparison of baseline removal 
techniques. The original 16 second ECG has baseline variation 
caused by respiration. The average R-wave amplitude is 0.9mV. 
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Fig. 11. Performance comparison of baseline removal 
techniques. The original 16 second ECG has baseline variation 
caused by motion. The average R-wave amplitude is 0.5mV. 

 
4. Conclusions 

The Savitzky-Golay time-domain smoothing filter 
described in this paper provides a low distortion baseline 
removal algorithm for ECG signals.  The SG filter 
estimates baseline noise from the ECG signal by 
performing a local polynomial fit in a data window and 
this baseline noise is removed by simply subtracting the 
estimated baseline from the raw ECG signal. This SG 
baseline removal method provides a simple approach that 
preserves the ST segment and does not need extra 
knowledge about the ECG, such as the isoelectric points 
required by the cubic spline method or the heart rate 
required by the high-pass filter, thus making it more 
suitable for implementation in real-time ECG monitoring 
systems. More tests are still needed to verify the 
effectiveness of this approach, especially in  cases of low 
heart rate and tall T-wave 
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