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Abstract

The purpose of this study is to give researchers improved
access to important electrophysiological quantities, such
as ion-channel gating variables, that are difficult or im-
possible to measure during in vitro experiments, yet are
thought to be critical to the formation of dangerous ar-
rhythmias. To help fulfill this goal, we examined the fea-
sibility of inferring these types of quantities from more
readily available data, such as measurements of cellular
membrane potential. First, we performed an observability
analysis on a linearized Luo-Rudy dynamic (LRd) myocyte
model, which showed that concentration and gating vari-
ables in the LRd model can be reconstructed from mem-
brane potential data. Next, we designed a Kalman filter
for the model and tested its performance under simulated
conditions. The tests demonstrated the ability of the fil-
ter to produce more accurate estimates of the system state
compared to the case without measurement feedback. This
research is relevant to human health, since state estima-
tion methods such as Kalman filtering could be used to ob-
tain more information about the response of a single cell
to the influence of pharmacological agents or other anti-
arrhythmic therapies, over a larger range of cellular vari-
ables than are typically monitored during an in vitro study.

1. Introduction

To gain a better understanding of the causes of abnormal
cardiac rhythms, researchers have relied on a variety of
measurement methods, including electrocardiography, op-
tical mapping, electrode recordings, and patch clamping.
While these approaches can provide valuable information,
it is generally difficult or impossible to obtain direct, con-
current observations of all processes, such as ion-channel
gating behavior and intracellular Ca2+ dynamics, that are
thought to be important to arrhythmogenesis.
To allow for a more complete view of electrophysiolog-

ical variables and their interactions during arrhythmia for-
mation, we have investigated state estimation algorithms
as a means of using available data to reconstruct quanti-

ties that are difficult or impossible to observe in an in vitro
setting. Previously, we demonstrated that microelectrode-
based membrane potential data can be used to estimate a
refractory variable, in addition to membrane potentials at
unmonitored locations within a cardiac fiber [1]. In this
study, we applied observability analysis and Kalman fil-
tering methods [2] to a more physiologically realistic cell
model, the Luo-Rudy dynamic (LRd) model [3, 4]. The
feasibility of estimating gating and other variables from
membrane potential measurements has been corroborated
by other studies where Kalman filters, nonlinear filters, or
closed-loop observers were applied to lower-order mod-
els of cardiac fibers and neurons [5–7]. However, to our
knowledge, these methods have not been tested on cardiac
ion-channel models, such as the LRd model, which include
direct representations of intracellular ionic concentrations
and Ca2+ dynamics. These models offer a wider range
of variables that can be compared directly with measure-
ments, and may serve as a basis for estimation methods
that improve our understanding of the mechanisms of ar-
rhythmias.

2. Methods

The Luo-Rudy dynamic (LRd) myocyte model [3, 4]
was selected for this study since it represents ionic be-
havior, including intracellular Ca2+ dynamics, in a phys-
iologically realistic manner while still having a relatively
small number of state variables. The N = 17 state vari-
ables include the membrane potential V (mV) and gating
variables h, m, j, d, f , xr, xs1, xs2, b, g. Additional vari-
ables are the following ionic concentrations (mmol/L): the
intracellular Na+ concentration, [Na+]i, the intracellular
K+ concentration, [K+]i, the total concentration of free
and buffered intracellular Ca2+, [Ca2+]i,t, the total Ca2+

concentration in the junctional sarcoplasmic reticulum
(SR) [Ca2+]j,t, and the Ca2+ concentration in the net-
work SR, [Ca2+]n. Another state variable, Irel (mmol/L
per ms), represents the Ca2+ release from the junctional
SR to the myoplasm. Defining the state vector as X(t) =
[V h m j d f xr [Ca2+]i,t [Na+]i [K+]i [Ca2+]j,t ...
[Ca2+]n xs1 b g xs2 Irel]T (t), the cell dynamical equa-
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tion has the form Ẋ(t) = f(X(t), istim(t)), where istim is
the stimulus current. A more complete description of the
model is available in [4].
Simulation codes for the LRd model were downloaded

from the Rudy Lab website [4, 8]. A conservative bipha-
sic stimulus current was applied periodically to the cell
model, and the inter-stimulus interval, called the basic
cycle length (BCL), was set to 1000ms. We assumed
that certain state variables were measured periodically at
times tm + jBCL, and that stimuli were applied at times
ts + jBCL, j ∈ {0, 1, . . .}. The LRd model was inte-
grated using a forward-Euler method with a time step of
Δt = 0.005ms. Matlab was used to perform all computa-
tions.
For an integration interval of one BCL, fixed points

Xo of the time-integrated LRd model were estimated with
a Newton-Krylov solver [9]. Corresponding Jacobians
were computed with finite difference methods [9], with the
added step of taking a central difference to reduce the ef-
fect of fixed-point estimation errors on the Jacobian [10].
Eigenvalues were determined with the eig function in
Matlab.
The resulting linearized model had the form

x(j + 1) = A(tm − ts)x(j)
y(j) = Cx(j)

where x(j) = x(tm + jBCL) = X(j) − Xo(tm − ts)
is the state vector for the linearized system. A(tm − ts)
and Xo(tm − ts) are the Jacobian matrix and fixed point
obtained for a particular choice of offset between the stim-
ulus and measurement times. The output y is the source
of measurements y(0), y(1), . . ., which are related to the
state vector through the output matrixC. For simplicity we
assumed that no perturbations were applied to the stimulus
current.
To determine whether measurements of any individual

variable were sufficient to estimate the remaining vari-
ables, we analyzed a model property called observability.
Each of the state variables was considered in turn as a pos-
sible source of data, leading to a collection of N output
matrices of size 1×N of the form Ci = [0 . . . 0 1 0 . . . 0],
where ith element is 1, indicating that the ith variable was
the measured variable. For each output matrix, the observ-
able and unobservable subspaces were computed using the
obsvf function in Matlab. Our analysis made use of a
well-known result in linear systems theory, that if a system
is observable from a particular output, then that output is
sufficiently informative to allow finite-time reconstruction
of a previous state of the system, provided that the history
of inputs to the system is also known.
To set up a standard Kalman filter design problem, we

assumed that the system was affected by two noise signals,

the process noise w(j) and measurement noise v(j):

x(j + 1) = A(tm − ts)x(j) + Bww(j)
y(j) = Cx(j) + v(j)

where w(j), v(j), and the initial state x(0) are indepen-
dent and Gaussian-distributed, and w(j) and v(j) are zero-
mean scalar white noise signals with variances Q and R.
We assumed that the process noise affected the membrane
potential dynamics through Bw = [1 0 . . . 0]T . Since
the system is time-invariant for fixed tm − ts, if it is also
observable (or at least detectable, meaning that all of the
unobservable eigenvalues are stable) for some choice of C
and satisfies certain restrictions involving the noise terms,
a steady-state Kalman filter exists and is well-defined.
Using the kalman function in Matlab, we designed a

Kalman filter of the form

x̂(j + 1|j) =A(tm − ts)x̂(j|j − 1)
+ L(y(j)− Cx̂(j|j − 1)),

where x̂(j|j − 1) is the state estimate at cycle j, based
on all past measurements up to y(j − 1), and L is the
Kalman filter gain matrix. The estimation error was de-
fined as e(j|j − 1) = x(j)− x̂(j|j − 1). To verify the ba-
sic functionality of the filter, we simulated the open-loop
(L = 0) and closed-loop estimation errors with a random
initial condition, with w and v chosen as sequences of
zero-mean Gaussian-distributed pseudorandom numbers,
and checked the behavior of the filter using different set-
tings for the process and measurement noise variances.

3. Results

The eigenvalues of the linearized LRd model were com-
puted and are displayed in Fig. 1. To three decimal places,
the leading eigenvalues are λ1 = 1.000, λ2 = 0.990, and λ3

= 0.717. The eigenvector of λ1 is primarily in the direction
of [K+]i, the second eigenvalue is mainly associated with
and [K+]i and [Na+]i, and the third mode has its largest
component along [Ca2+]j,t. The remaining eigenvalues
are relatively close to the origin.
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Figure 1. Eigenvalues of the linearized LRd model, for
BCL = 1000ms.
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An example of the results of the observability analysis
is shown in Fig. 2 for tm− ts = 1000−Δt ms. The eigen-
value magnitudes are plotted against the measured variable
index derived from the ordering of variables in the state
vector X(t), e.g. i = 1 (C = C1) corresponds to measur-
ing V (j), i = 2 corresponds to measuring h(j), etc.
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Figure 2. Eigenvalue magnitudes vs. index of mea-
sured state variable, showing observable and unobservable
modes, for tm − ts = 1000 −Δt ms.

As seen in Fig. 2, for a measurement taken 1000 −Δt
ms after the application of the stimulus, the larger eigen-
values are observable from measurements of each of the
state variables except for i = 5 (d, the activation gate of
ICa(L)), and i = 17 (Irel). For each choice of output, one
or more of the eigenvalues near the origin is unobservable,
as indicated by the row of squares near |λ| = 0. Since
these eigenvalues are highly stable, this loss of observabil-
ity will not pose a problem in our estimator design; we
are mainly concerned with the eigenvalues near the stabil-
ity boundary, which only become unobservable when the
output is d or Irel. Observability properties for additional
tm − ts values are summarized in Table 1.

Table 1. Observability of larger LRd eigenvalues (|λ >
0.06|) for different values of tm − ts. The second column
lists any outputs from which the larger eigenvalues were
unobservable.

tm − ts + Δt (ms) Not observable from

200 d
400 d, Irel

600 d, Irel

800 d, Irel

1000 d, Irel

For the timings shown in Table 1, the larger eigenval-
ues were found to be observable from measurements of
the majority of the state variables, including V . Only d,

and for the last four intervals tested, Irel, were found to be
insufficient for observability of the larger modes.
To further investigate the proposed estimation method,

a Kalman filter was designed for tm − ts = 1000 −Δt
ms, assuming that only noise-contaminated measurements
of V were available. We selected Q = 0.01 and tested
two settings for the measurement noise, R = 0.001 and
R = 0.1. Simulation results for the open-loop (L = 0)
estimation errors are shown in Fig. 3, and the Kalman filter
estimation errors are shown in Fig. 4, for the case Q =
0.01, R = 0.001. For clarity, errors are only displayed for
a few variables in each figure; the remaining errors have
similar magnitudes.
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Figure 3. Open-loop estimation errors vs. cycle number
for selected state variables.

For the random noise settings used in Figs. 3 and 4, the
estimation error covariance norm over 300 cycles was 9.88
for the open-loop case, 6.46 (34.6% smaller than the open-
loop norm) for the Kalman filter with Q/R = 10, and 7.18
(27.3% smaller than the open-loop norm) for the Kalman
filter with Q/R = 0.1.

4. Discussion and conclusions

The results of the observability analysis and Kalman fil-
ter design demonstrated the overall feasibility of recon-
structing cellular dynamical variables, such as ionic con-
centrations and gating states, from measurements of the
membrane potential. The loss of observability when d or
Irel was chosen as the output presumably reflects a weak
influence of the other variables on the dynamics of d and
Irel, and further investigation of these results may produce
more detailed physiological interpretations. Expanding
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Figure 4. Kalman filter estimation errors vs. cycle number
for selected state variables.

upon our study, by including a finer-grained exploration
of tm− ts values, a wider range of BCLs, different observ-
ability measures, and variations on variable scalings and
rank tolerances may reveal additional insights into which
choices of output variables are best suited for state estima-
tion.
The large drift in the open-loop estimation errors in

Fig. 3 was caused by the [K+]i memory mode at the sta-
bility boundary. The Kalman filter reduced the largest
eigenvalue to approximately λ = 0.992 for both of the
tested Q/R ratios, and produced smaller estimation er-
rors as shown in Fig. 4. It was determined (results not
shown due to space constraints) that the leading Kalman
filter eigenvalue-eigenvector pair is similar in size and di-
rection as the second open-loop mode (associated with
[K+]i and [Na+]i) for bothQ/R ratios, which implies rel-
atively weak observability of this mode as compared with
λ1 = 1.000. As expected, the improvement in the esti-
mation error covariance was larger for Q/R = 10, which
corresponds to having data that is of higher quality than the
model predictions. Topics of ongoing work include model-
ing the noise terms in a more realistic manner, developing
reduced-order and predictor-corrector variants of the filter,
and testing the estimator with data from real cells.
In summary, our analysis of the LRd model has shown

that membrane potential data can be used to estimate other
quantities, such as gating and ionic variables, which may
be difficult to measure but are thought to play an important
role the development of arrhythmias. Closed-loop estima-
tion methods such as the Kalman filter constitute a promis-
ing approach for allowing researchers to use limited data to

gain a more complete understanding of the dynamical be-
havior of cardiac ion-channel quantities.
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