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Abstract

Information flowbetween heart period (T), systolic pres-
sure (S) and respiration (R) variability in a head-up tilt
(HUT) protocol is assessed by transfer entropy (TE). Two
estimates of TE are compared: the model-based (MB)
approach using linear regression under the Gaussian as-
sumption, and the model-free (MF) approach combining
binning estimates of entropy and non-uniform delay em-
bedding. The approaches were applied to 300-beats series
of T, S, R measured in the supine (su) and upright (up) po-
sitions during HUT. Both MB and MF approaches detected
a unidirectional information transfer from R to T and from
R to S, and a significant decrease of the TE from R to T, as
well as a significant increase of the TE from S to T, mov-
ing from su to up. For the MF approach, these trends were
supported by the statistical test for TE significance. These
results suggest that TE estimated from T, S and R variabil-
ity can successfully describe the physiological mechanisms
involved in the short term cardiovascular and cardiorespi-
ratory regulation during HUT.

1. Intr oduction

In the last years, a variety of time series analysis meth-
ods have been proposed to quantify cardiovascular, car-
diopulmonary and vasculo-pulmonary interactions through
the study of simultaneously measured heart period (HP),
systolic arterial pressure (SAP), and respiratory flow (RF)
spontaneous variability [1]. Recent developments aimed
to infer the causal direction between HP, SAP and RF that
would give some insight onto the interaction mechanism of
the three systems. In this context, one of the most promis-
ing tools for causality analysis is the transfer entropy (TE)
[2], an increasingly used measure of information flow be-
tween physiological time series. The TE has a solid foun-
dation in information theory and, in principle, is sensitive
to both linear and nonlinear interactions between time se-
ries. In practical applications where only time series of

finite length are available, the TE is commonly estimated
through a linear model-based (MB) approach exploiting
the close relation with Granger causality that holds under
the assumption of Gaussianity [3]. Only recently, nonlin-
ear model-free (MF) estimation approaches that favor the
empirical estimation of information-theoretic measures of
causality related to the TE have been proposed [4, 5]. In
this study, we compare MB and MF approaches as regards
the detection of information transfer in short-term cardio-
vascular and cardiorespiratory variability. To this end, we
considered HP, SAP and RF series measured from healthy
subjects during a head-up tilt test protocol, and assessed in
the supine and upright positions the interactions between
the series resulting from MB and MF computation of TE.
MB and MF approaches were compared as to their capabil-
ity to characterize, in terms of TE values and statistical sig-
nificance, the response of known regulation mechanisms to
the orthostatic stimulus provided by tilt.

2. Methods

Let usconsider a physical system composed of 3 inter-
acting dynamical subsystems, and suppose that we are in-
terested in evaluating the information flow from the driv-
ing systemX to the response systemY , in the presence
of the remaining systemZ. The systems can be seen as
stochastic processes and letxn, yn, zn denote theobserva-
tions of the stochastic variables of the respective processes
at timen. Moreover, letX−

n = [xn−1, xn−2, . . .] , Y −
n =

[yn−1, yn−2, . . .] , Z−
n = [zn−1, zn−2, . . .], be the vector

variables describing the past states of the systems up to
time n − 1. Then, the TE fromX to Y conditioned toZ
can be defined as the difference between two conditional
entropy (CE) terms, specifically the entropy of the present
state of the response conditioned to the past states of all
systems except the driver, and the entropy of the present
state of the response conditioned to the past states of all
systems including the driver [6]:

TEX→Y |Z = H(yn|Y
−
n , Z−

n )−H(yn|X
−
n , Y −

n , Z−
n ) (1)
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Each CE term in (1) is in turn defined as the difference
between two Shannon entropies, i.e.,

H(yn|Y
−
n , Z−

n ) = H(yn, Y −
n , Z−

n ) − H(Y −
n , Z−

n )

and the same forH(yn|X−
n , Y −

n , Z−
n ), where the en-

tropy of any vector variablea is defined asH(a) =
−
∑

p(a) lnp(a). Estimation of the TE relies essentially
on determining a suitable estimator for the probability
functionsp(∙) involved in the entropy computations, and
on devising approaches for setting an appropriate number
of past components to be used in place of the infinite-
dimensional vectorsX−

n , Y −
n , andZ−

n . Two alternative
estimation approaches are described in the following.

2.1. Linear model-based approach

The model-based (MB) approach works under the as-
sumption that the multivariate process{x, y, z} has a joint
Gaussian distribution. This assumption allows to work
with well-known expressions for the probability density
functions. Under this assumption, the CE terms defining
the TE in (1) are expressed by means of linear regressions
involving thep past states of the systems collected in the
vector variables, i.e.Xp

n = [xn−1, . . . , xn−p] forX, Y p
n =

[yn−1, . . . , yn−p] for Y andZp
n = [Zn−1, . . . , Zn−p] for

Z [7]. Specifically, an unrestricted regression ofyn on
theMp × 1 vectorV (u) = [Xp

n Y p
n Zp

n]T , and a restricted
regression ofyn on the (M − 1)p × 1 vector V (r) =
[Y p

n Zp
n]T , are defined as follows:

yn = A(u)V (u) + ε(u)
n (2)

yn = A(r)V (r) + ε(r)
n (3)

whereA(u) andA(r) are vectors of linear regression coef-
ficients with dimension1×Mp and1× (M −1)p, respec-
tively. The termsε(u)

n andε
(r)
n are scalar white noise resid-

uals with varianceσ(u) and σ(r). Under the Gaussian as-
sumption, it has been demonstrated [3] that the entropy of
yn conditioned to the unrestricted or restricted regression
vectors is, respectively,H(yn|V (u)) = 0.5(log σ(u)+2πe)
andH(yn|V (r)) = 0.5(log σ(r) +2πe), from which it fol-
lows immediately the TE estimate:

TEX→Y |Z =
1
2

log
σ(r)

σ(u)
(4)

In this study, the unrestricted and restricted regression
models in (2) and (3) were estimated by the least-squares
method, and the orderp was selected by the Bayesian
information criterion [8]. The statistical significance of
the TE computed through the MB approach was assessed
by the parametric F-test for the null hypothesis that the
p coefficients ofA(u) which weigh the driving variable
Xp

n are all zero [9]. In our case, the test statistic is

F = ((RSSr − RSSu)/p)/(RSSu/(N − Mp)), where
RSSr and RSSu are the residual sum of squares of the
restricted and the unrestricted model, andN is the time se-
ries length. The TE is considered statistical significant if
F is larger than the critical value of the Fisher distribution
with (p,N−p) degrees of freedom at the significance level
α = 0.05.

2.2. Nonlinear model-free approach

The model-free (MF) approach does not make any
prior assumption about the probability distributions of
the observed multivariate process, and is based on
a sequential conditioning procedure for selecting the
past system components to be used in CE estima-
tion which are more relevant to the description of
the response variable [4, 5]. Specifically, a condi-
tioning vector Vn is built progressively from the past
L observations of the systems forming the setΩ =
{xn−1, . . . , xn−L, yn−1, . . . , yn−L, zn−1, . . . , zn−L} (L =
10 in this study). Starting with an empty condition-
ing vector V

(0)
n = ∅, at each stepk ≥ 1 the con-

ditioning vector isV
(k)
n = [w(k)

n V
(k−1)
n ] where w

(k)
n

minimizes the CEH(yn|wn, V
(k−1)
n ) for wn ∈ Ω −

V
(k−1)
n . The selection of components is terminated when

an irrelevant component is selected, i.e., when the de-
crease in the CE brought by the component is not sta-
tistically significant. To assess its statistical significance,
the CE decreaseI(yn, w

(k)
n |V (k−1)

n ) = H(yn|V
(k−1)
n ) −

H(yn|w
(k)
n , V

(k−1)
n ) is tested against its null distribution

formed by the values of CE decrease computed on repli-
cations ofw(k)

n , where at each replication the time ordered
samples ofw(k)

n are time-shifted by a randomly selected
lag (larger than 20, set to exclude autocorrelation effects).
If the original CE decrease is above the100(1 − α)th per-
centile of its null distribution (whereα = 0.05), w(k)

n is in-
cluded in the conditioning vector, otherwise it is discarded
and the procedure terminates includingk − 1 components
in the final vectorVn = V

(k−1)
n . After termination of the

sequential conditioning procedure, the conditioning vector
is composed asVn = [V X

n , V Y
n , V Z

n ], whereV X
n , V Y

n , and
V Z

n denote the components ofVn belonging respectively
to X,Y , andZ. Then the TE is estimated as:

TEX→Y |Z = H(yn|V
Y
n , V Z

n ) − H(yn|Vn) (5)

In this study, practical estimation of the CE from time
series data was performed using the classical histogram-
based method, that consists in coarse-graining the ob-
served dynamics usingQ quantization levels (Q = 6
in this study), and computing entropies by approximat-
ing probability distributions with the frequencies of occur-
rence of the quantized values [4]. The statistical signifi-
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cance of the TE computed through the MF approach re-
sulted implicitly from the randomization test used to test
the significance of each added component. In particular,
if at least one component fromX was selected during the
procedure (i.e., whenV X

n 6= ∅) the TE was strictly pos-
itive and was taken as statistically significant; if, on the
contrary, no components fromX were selected,V X

n = ∅,
TEX→Y |Z = 0 and the TE was taken as non significant.

3. Protocol and data analysis

We considered 15 young healthy subjects (25.7 ± 2.7
years old) undergoing a standard head-up tilt testing pro-
tocol [4]. The acquired signals were the surface ECG,
the finger arterial blood pressure, and the respiratory nasal
flow, measured at 1 kHz sampling rate for 15 min in the
resting supine position, and 15 further min in the60◦ posi-
tion after passive head-up tilting of the bed table.

The beat-to-beat variability series of HP,T (n), SAP,
S(n), and RF,R(n), were offline measured respectively
as the temporal interval occurring between then-th and
the(n + 1)-th R waves of the ECG, as the local maximum
of the pressure signal inside then-th cardiac interval, and
as the sample of the respiratory tracing taken at the onset
of the n-th cardiac interval. This measurement conven-
tion allows instantaneous (i.e., non-delayed) effects from
S(n) to T (n), as well as fromR(n) to S(n) and toT (n).
The subsequent data analysis was performed on station-
ary windows of 300 beats taken in supine (su) and upright
(up) body positions; inside these windows, the series were
normalized to zero mean and unit variance, obtaining the
dimensionless seriesr(n), s(n), t(n). For each subject,
the TE between each pair of series was estimated in the
two body positions using MB and MF approaches.

Statistical analysis was performed comparing the distri-
butions over subjects of each measure obtained in thesu
andup conditions by means of the Wilcoxon signed rank
test for paired data; the same test was used to assess the
statistical significance of the TE estimated along the two
directions of each possible pairwise interaction. The num-
ber of subjects for which the null hypothesis of zero TE
was rejected was also counted for each causal direction in
the two conditions.

4. Results and discussion

Figures 1 and 2 report the distributions of TE computed
respectively using the MB and the MF approach, and as-
sessed for all the directions of interaction between RF, SAP
and HP series in the supine and upright positions. Three
main results were obtained using both the MB and the MF
approaches: (i) the existence of almost unidirectional in-
teractions from RF to SAP and to HP, documented by the
markedly higher magnitude ofTER→S|T and TER→T |S ,

Figure 1. Distribution of TE estimated by the MB ap-
proach. Values are median, 25-75 percentile (box) and 5-
95 percentile (whiskers) over 15 subjects considered for
each causal direction in thesuandup body positions. The
number of subjects showing statistically significant TE is
reported below each distribution.∗ stands forp < 0.05
for su vs. up; # stands forp < 0.05 for TEX→Y |Z vs.
TEY →X|Z , whereX,Y, Z can be any ofR,S, T .

Figure 2. Distribution of TE estimated by the MF ap-
proach. Symbols are as in Fig. 1.

respectively compared withTES→R|T and TET→R|S , in
both su and up conditions; (ii) the weakening of the in-
formation transfer from RF to HP with the tilt transi-
tion, documented by the statistically significant decrease
of TER→T |S moving fromsu to up; (iii) the enhancement
of the information transfer from SAP to HP with the tilt
transition, documented by the statistically significant in-
crease ofTES→T |R moving fromsu to up. These results
document the capability of TE to reflect expected cardio-
vascular and cardiorespiratory physiological mechanisms.
In particular, the existence of an unidirectional information
flow from respiration to the two cardiovascular variables
confirms previous studies suggesting that the respiratory
activity acts as an exogenous disturbance over cardiovas-
cular regulation, i.e., affecting arterial pressure and heart
rate variability without being affected by them [10]. The
weaker flow from RF to HP after tilt confirms that central
effects of the respiratory drive on the cardiac vagal mo-
tor neurons, evident in the supine position, are blunted af-
ter tilt as a consequence of the vagal withdrawal that de-
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creases the amplitude of RF-related oscillations in the HP
[11]; this effect was evidenced more clearly by the MF-
based TE estimateTER→T |S , which after tilt was no more
significantly higher thanTET→R|S (Fig. 2; this was not
observed for the MB-based TE of Fig. 1). On the other
hand, the stronger flow from SAP to HP reflects the well-
studied involvement of the cardiac baroreflex in control-
ling the heart rate consequent to the tilt-induced activation
of the sympathetic nervous system [11].

While MB and MF estimation of information transfer
produced similar results in terms of the TE magnitude,
some differences were evidenced when the statistical sig-
nificance of the estimates was considered. First, the null
hypothesis of zero TE was rejected in more subjects using
the F-test associated with the MB analysis than when us-
ing the randomization test associated with the MF analysis.
Moreover, the trends in the TE magnitude leading to the re-
sults discussed above were supported by similar trends of
the statistical significance only when the TE was estimated
through the MF approach. For instance, the tilt-induced
decrease ofTER→T |S and increase ofTES→T |R were
not accompanied by substantial variations of the number
of subjects showing significant TE when the MB approach
was used (see Fig. 1). On the contrary, using the MF ap-
proach this number was significantly decreased (from 15 to
5) along theR → T direction, and significantly increased
(from 4 to 13) along theS → T direction (Fig. 2). Also
the unidirectional nature of the coupling between RF and
SAP was evidenced more clearly, in terms of statistical sig-
nificance of TE, by the MF than the MB approach. Indeed,
the MB approach detected a non-negligible number of sub-
jects with significant coupling from SAP to HP (8 and 5
duringsuandup), while this number was reduced to 1 and
2 duringsuandupusing the MF approach.

5. Conclusion

The present study showed that the main mechanisms of
cardiovascular and cardiorespiratory regulation operating
in the resting supine position and in the upright position
after head-up tilt can be characterized from the structure
of interactions between RF, SAP and HP variability, as-
sessed in terms of TE magnitude, both using a novel MF
approach and a more standard MB approach. Moreover,
these mechanisms can be better elicited, when looking at
the statistical significance of the estimated TE, by means of
the sequential conditioning procedure adopted by the MF
approach, than with the linear regression statistics adopted
by the MB approach.

The partial overlap in the results obtained from the ap-
plication of linear MB and nonlinear MF approaches could
suggest that the information flow among RF, SAP and
HP variability series is governed, at least in the consid-
ered head-up tilt test protocol, mainly by linear interaction

mechanisms. Future studies will explore further this issue
by extending the comparison presented here to experimen-
tal protocols and/or pathological conditions which are able
to evoke nonlinear interactions between cardiovascular and
cardiorespiratory variables.
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