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González-Otero1, Jo Kramer-Johansen3, Henning Naas3, Trygve Eftestøl4

1 University of the Basque Country (UPV/EHU), Bilbao, Spain
2 University Rey Juan Carlos, Madrid, Spain

3 Oslo University Hospital and University of Oslo, Oslo, Norway
4 University of Stavanger, Stavanger, Norway

Abstract

Cardiopulmonary resuscitation (CPR) artifact filtering
techniques have not been successfully combined with
commercial shock advice algorithms (SAA) to diagnose
the rhythm during CPR. Recently, a promising new
approach based on using SAAs especially designed to
diagnose the filtered ECG has been introduced. This
study evaluates the impact of filtering CPR artifacts
on the shock/noshock decision for several well-known
VF-detection parameters.

The detection accuracy of 22 VF-detection parameters
was calculated for artifact-free ECG segments and for
ECG segments corrupted by chest compressions before
and after filtering. Performance was measured in terms of:
area under the curve of the receiver operating characteristic
curve, and sensitivity/specificity for the shock/noshock
decision.

Filtering the CPR artifact improved the detection
capacity of most parameters, and showed that combining
features after filtering may be a successful strategy.

1. Introduction

Chest compression artifacts (CC-artifacts) during
cardiopulmonary resuscitation (CPR) impede a reliable
rhythm analysis by the shock advice algorithms (SAA) of
current automated external defibrillators (AED). However,
interrupting CPR for a reliable analysis adversely affects
the probability of survival. A reliable SAA during
CPR would avoid CPR interruptions and increase the
probability of survival.

Several methods have been proposed to diagnose
the rhythm during CPR including filtering the artifact
and designing SAAs to diagnose the corrupted ECG.
These methods are generally evaluated in terms of their
sensitivity and specificity, i.e. their capacity to detect

shockable and nonshockable rhythms, respectively. In
most studies sensitivity was above 90%, the performance
goal recommended by the American Heart Association
(AHA) when AEDs analyze artifact-free ECGs [1].
However, specificity rarely exceeded 85%, far from the
95% recommended by the AHA. Recently, a promising
new approach based on using a SAA specially designed
to diagnose the filtered ECG has been introduced. This
method successfully met the AHA recommendations [2].

The aim of this study was to evaluate the impact of
filtering CPR artifacts on the shock/noshock decision for
several well-known VF-detection features.

2. Methods

2.1. ECG database

Two databases were used for this study: an artifact-free
database and a database of ECG corrupted by CPR
artifacts. The artifact-free database was extracted from 370
out-of hospital cardiac arrest (OHCA) episodes acquired
by the Oslo University Hospital (Norway) in 2012. The
database of corrupted ECG was extracted from a large
two-phase OHCA study conducted between 2003 and
2005. This database included CPR/no-CPR annotations
derived from the compression depth (CD) signal acquired
by a CPR feedback device. The initial ECG rhythm
types and all subsequent rhythm transitions were already
annotated in both databases by consensus between an
experienced clinician and a biomedical engineer.

Following previous studies on VF detection, the
features were evaluated using 8-s ECG segments [3, 4].
Consequently, 8-s ECG-segments were extracted from
both databases. In addition, the CD signal was also
extracted in the corrupted database to enable the adaptive
filtering of the CPR artifact. The final composition of the
ECG databases is shown in Table 1.
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Rhythm Type Artifact-free Corrupt

Shockable 318 (72) 1185 (69)
Nonshockable 1572 (165) 4000 (142)

Table 1. Number of 8-s segments (patients in parenthesis)
for the shockable and nonshockable rhythms.

2.2. CPR suppression filter

CPR artifacts were suppressed using a state of the
art method based on an LMS filter [5]. The LMS filter
adaptively estimates the harmonic content of the CPR
artifact by fitting a quasi-periodic additive artifact model.
In this model the time-varying fundamental frequency of
the artifact is derived from the CC marks obtained from
the CD signal. The filter estimates the artifact, ŝcpr, and
subtracts it from the corrupt ECG, scor, to obtain the
filtered signal, sfilt:

sfilt(n) = scor(n)− ŝcpr(n).

Fig. 1 shows a filtering example in which the CPR artifact
is visible during chest compressions, and the underlying
rhythm is revealed after filtering. The tk instants indicate
the CC marks. For this study the optimal values of the filter
parameters were used, as described in [5].
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Figure 1. Filtering example for a 12 s segment. Removing
the CC-artifact from scor reveals the underlying VF. To
estimate the artifact the CC marks obtained from the CD
were used.

2.3. VF detection features

For each 8-s segment a set of 22 VF detection
parameters from four representative ECG analysis
domains were computed. The detailed description of the
methods can be found in [2–4, 6, 7], with references to the
original papers. The following features were computed:

• Time Domain. It includes the analysis of the amplitude,
slope, sample distribution and heart rate estimators.
The evaluated features were: nP, bS, Count1, Count2,
Count3, Threshold Crossing Interval (TCI), Threshold
Crossing Sample Count (TCSC), Kurtosis, FreqBin and
Mean Absolute Voltage (MAV).

• Time-Frequency Domain. Based on the wavelet
analysis of the segments described in [6]. A single
feature was evaluated: Morphological Consistency
Residual (MCR).

• Spectral Domain. It includes the analysis of the
spectral concentration, normalized spectral moments or
the relative power content in different frequency bands.
The evaluated features were: A1, A2, A3, FSMN,
VFleak, Pm and Ph.

• Complexity Domain. A sample of the most
representative methods that evaluate the complexity
of the ECG including: Sample Entropy (SpEn),
Complexity Measure (CM), Phase Space Reconstruction
(PSR) and a phase plot of the Hilbert transform (HILB).

2.4. Data analysis

The performance of the VF detection features was
evaluated in terms of the receiver operating characteristic
curve (ROC) analysis. All features were calculated
for the artifact-free, the corrupted and the filtered
segments. Performance was measured in terms of:
area under the curve (AUC), and sensitivity/specificity
for the shock/noshock decision. Two cut-off points
were computed in the ROC curve: sensitivity for a
95% specificity (AHA goal), and specificity for a 90%
sensitivity (AHA goal).

3. Results

A summary of the ROC curve analysis for the 22 VF
features is shown in Table 2 for the artifact-free, the corrupt
and the filtered segments.

For the artifact-free segments four features met AHA
sensitivity and specificity goals: bS, count2, count3 and
nP. These are all time domain features designed to detect
the presence of QRS complexes (nonshockable rhythms)
by either analyzing the amplitudes of the high frequency
components of the ECG or the slope of the ECG. Their
ROC curves for the clean segments are shown in Fig. 2.
All four features were very robust with AUC values above
0.965.

For the corrupt segments the performance of the features
degraded, and all features were far from meeting AHA
goals. The AUC substantially decreased for the spectral
features, in some cases by over 0.2, while the AUC of
other features (CM, count1 or count2) was only marginally
affected by the artifact. The spectral distribution of
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Artifact-free Corrupt Filtered
Feature AUC Se Sp AUC Se Sp AUC Se Sp
nP 0.969 90.6 95.1 0.952 82.4 89.5 0.953 82.9 91.4
bS 0.986 93.4 97.1 0.948 78.6 89.6 0.964 88.6 94.2
Count1 0.961 78.6 91.0 0.927 66.8 80.3 0.929 63.4 81.3
Count2 0.992 95.6 98.2 0.966 84.1 90.6 0.966 84.6 93.0
Count3 0.983 91.8 96.1 0.950 75.3 86.6 0.951 75.6 88.0
TCI 0.901 55.3 72.1 0.780 28.3 42.4 0.847 36.9 61.1
TCSC 0.858 7.9 76.1 0.756 4.1 59.9 0.873 11.4 77.9
Kurt 0.852 33.0 57.4 0.759 7.1 59.3 0.856 15.4 72.5
FrqBin 0.826 21.4 57.4 0.814 32.4 48.5 0.889 45.9 70.9
MAV 0.849 8.8 73.5 0.753 6.7 57.6 0.864 10.5 76.3
MCR 0.951 77.4 87.2 0.931 62.9 81.4 0.922 58.6 79.5
A1 0.668 17.3 21.8 0.531 3.5 11.9 0.643 9.3 31.9
A2 0.883 62.9 61.8 0.666 7.3 26.4 0.792 36.3 29.8
A3 0.870 59.7 51.8 0.665 15.9 22.5 0.786 27.8 36.8
FSMN 0.872 58.5 61.3 0.675 11.9 30.7 0.777 26.1 33.1
Vfleak 0.781 44.7 24.4 0.716 8.1 29.9 0.875 53.2 61.1
Pm 0.752 40.6 24.9 0.635 27.9 11.5 0.816 42.4 45.1
Ph 0.756 7.2 53.6 0.616 5.9 29.6 0.627 1.9 36.1
SpEn 0.969 88.7 94.0 0.914 68.6 69.2 0.954 75.2 88.9
CM 0.848 32.4 61.1 0.812 32.5 41.5 0.893 46.5 70.5
PSR 0.915 67.0 71.9 0.843 23.9 66.6 0.884 41.4 73.5
HILB 0.929 72.6 79.5 0.842 22.1 66.7 0.873 30.0 73.0

Table 2. ROC curve analysis of the VF detection features in terms of AUC, sensitivity (Se) and specificity (Sp). The
sensitivity corresponds to a 95% specificity in the ROC curve, and the specificity to a 90% sensitivity.

 

 

nP
Count3

bS

Count2

1-Sp

Se

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2. ROC curves for the artifact-free segments of the
four features that meet AHA goals.

the ECG power is very affected by the presence of
CPR artifacts. However, features that analyze only the
high-frequency bands (above 10Hz) of the ECG, such as
Count{1,2,3} or MCR, are less affected by CPR artifacts
which normally concentrate most their power below 10Hz.

Filtering improved the performance of the features. The
increase in AUC was largest for the spectral features,
showing that the adaptive filter successfully removed the
artifact despite the spectral overlap between the artifact
and the underlying rhythm. In fact, for the features
marginally affected by the artifact, filtering had no impact
on the AUC. Five features (bS, Count2, Count3, nP and
SpEn) had AUCs above 0.95 after filtering, and the best
performance was obtained for bS with values close the
AHA recommendations. For the cut-off points of the ROC
curve, filtering improved the sensitivity for bS by 10 points
and the specificity by 5 points. Fig. 3 shows the ROC
curves for the bS feature for all types of segments.

4. Discussion and conclusions

Recent studies have renewed the interest on the
detection of VF in artifact-free ECG using classical
features [4,7]. This study is a comprehensive evaluation of
the performance of VF detection features in the scope of
resuscitation, and thus evaluates those features on OHCA
data, both free of artifact and during CPR. Our results for
artifact free data are marginally worse than those reported
for public databases [4, 7]. Nonshockable OHCA rhythms
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Figure 3. ROC curves of bS, the best overall feature,
for all the segments. Filtering improved the performance,
although AHA goals were not met.

are more irregular than those found in public databases,
and VF in OHCA records is first recorded minutes after
its onset at a time at which its frequency and amplitude
characteristics may have degraded.

Our results confirm that the accurate detection of VF
during CPR is much more challenging. The spectral
overlap of the CPR artifact with OHCA rhythms largely
affects the performance of many VF detection features.
Filtering successfully removes the artifact, as evidenced by
the increase in performance of the features. However, for
an AHA compliant algorithm features evaluating different
and non complimentary ECG characteristics should be
combined in a machine learning framework. Our results
suggest that analyzing the slope of the ECG (bS and nP) in
combination with the amplitudes of the higher frequency
bands (count2 and count3) and the complexity of the ECG
(SpEn) may be a promising approach.

Filtering the artifact may be a technically challenging
problem. In this study the filter used the CC-marks
obtained from the CD signal acquired from an external
CPR aid pad. These devices may not always be available in
a resuscitation scenario. The performance of the features
should be analyzed when the CC-marks are obtained from
the transthoracic impedance, which is always acquired
through the defibrillation pads. The results should not
vary substantially [8]. Alternatively, the feasibility of
an algorithm that uses exclusively the ECG should be
explored, using a combination of features marginally
affected by the CPR artifact.

Finally, in this study the analysis was conducted
for 8-s ECG segments. Algorithms that diagnose an
artifact-free ECG using shorter segments (around 3-5 s)
should be explored. These algorithms could be used to
shorten pre-shock pauses and to analyze the rhythm during

ventilation pauses in CPR, thus minimizing or eliminating
interruptions in CPR.
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