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Abstract 

The emergence of eHealth and the proliferation of 

mobile healthcare computing devices has led to a large 

increase in message transfers among remote healthcare 

providers and patients. Different scenarios in cardiology, 

such as the follow up of chronic heart diseases at home 

obviously require intelligent and reliable eHealth 

messages communication policies to proactively react in 

case of unexpected events (exceeded deadlines for 

reply,…) or context changes (chest pain increase,…). We 

propose a cardiology eHealth message modeling process 

that represents an orchestration of information systems 

and services for the support of context-aware, 

personalized, intelligent and adaptive routing policies. 

Several contextual data from the source (patient clinical 

signs), the target (healthcare professional localization), 

and the message content itself are taken into account for 

processing the message transfers. The message content is 

compliant with the HL7 Reference Information Model 

specifications. We finally demonstrate the process of 

inferring routing parameters such as the requested 

healthcare professional profile type and the routing 

means in function of different context values by means of 

Dynamic Bayesian Networks, and we highlight the 

routing policy adaptation process. 

1. Introduction

The rapid worldwide development and use of eHealth 

and mHealth applications yields for an increasing number 

of message exchanges between several health actors and 

parties. In the cardiology domain, there exists a large 

variety of remote healthcare communication scenarios in 

self-care, home care (monitoring of cardiovascular 

patients, tele-expertise, etc.) from devices, patients or 

relatives, nursing auxiliaries, nurses, and also GPs, 

cardiologists, etc., to any healthcare professional. 

However, the latter may sometimes be unable to answer 

to the request because of commitment in another task, of 

vacations, etc., and the reasons for sending a message 

may be diverse: a worsened clinical state, routine 

transmission of ECG recordings, request for an 

appointment or for an advice, etc. A mediation system is 

therefore necessary for improving messages delivery in a 

context of ambient intelligence, according to the various 

needs which are greatly changing over time for each 

actor. Some communication management solutions were 

previously reported, but they remain dedicated to specific 

use-cases, such as emergency situations. Recently, with 

the proliferation of improved communication 

technologies, research in eCardiology has mainly focused 

on designing mobile cardiac health care devices, such as 

EPI-MEDICS [1], and intelligent and wearable devices. 

However, only a few studies emphasize the quality of 

cardiac eHealth messages transmission. In this paper, we 

propose a modeling of the cardiology eHealth message 

routing management process. This process reflects an 

orchestration of distributed ambient services providing 

intelligent, personalized and adaptive routing strategies. 

Most of these services manage data belonging to three 

types of ecosystems: source, target and message [2]. In 

addition, we propose a Dynamic Bayesian Network 

(DBN) to infer the routing parameters, viz the required 

delay for message reading in function of message 

contextual data. Moreover, to comply with the 

international standard in eHealth message exchange, we 

have based all our design on HL7 Reference Information 

Model (RIM) vocabulary specification [3]. We point out 

the RIM attributes constituting the variables of the 

network. We finally simulate the adaptation of the routing 

policy strategy in case of heart diseases descriptors 

variations leading to changes in interpretation.  

The paper is structured as follows. In the next section, 

we present the cardiology eHealth message routing 

management process, its main services and their 

functionalities. We then refer to HL7 RIM attributes to 

build a DBN model for routing parameters inference.  

2. Cardiology eHealth message routing

management process 

In this section, we propose a leading agent, the routing
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Figure 1. Cardiology eHealth message routing management process.

policy manager that will be responsible for managing the 

routing of cardiology eHealth messages. Using standard 

BPMN diagrams, we model the process executed by this 

agent, highlight its functionality and the corresponding 

services components, and show how it may behave in 

case of the triggering of unexpected events. This process 

interacts with two other processes: Message status 

supervision and ecosystem supervision that we have 

described in detail in [4]. As shown in figure 1, the 

cardiology eHealth message routing management starts 

after receiving a patient healthcare request. The latter may 

be issued by a message reporter, such as a mobile 

healthcare device, PDA, nurse call system, etc. The 

routing policy manager sequentially checks the validity of 

the syntax of the request, i.e. if it is compliant for 

example with international standard specifications, and 

pre-analyzes the request’s semantics. The “message 

semantics pre-analysis” service includes the verification 

of the validity of the indication of a preferred destination 

by the sender. In case of undetermined destination, the 

present process calls for two collapsed sub-processes 

“Routing requirements inference” and “Search for 

relevant healthcare professional”. The first sub-process 

reasons about source and message context to infer the 

adequate healthcare professional’s profile type (medical 

or paramedical, general or specialist, etc.), the required 

material resources as well as the required delays for 

message reception, reading and reply. The second 

performs a ranking of possible, relevant message 

destinations according to the previously inferred profile 

type. A simulation of the “Routing requirements 

inference” sub-process model is provided in the next 

section. The “Search for relevant healthcare professional” 

sub-process creates a ranked list of possible destinations. 

The message is then routed to the first listed destination. In 

case of reception of a reject notification from the 

healthcare professional, of exceeding a deadline from the 

“message status supervision process” or of context 

changes from the “ecosystem supervision process”, the 

eHealth message routing management process invokes the 

“decide routing and escalation” service to take the right 

decisions: resend or redirect, and/or possibly escalate or 

de-escalate. In function of these events, as well as of the 

history of the past actions and healthcare professional’s 

experience and “trust level”, this service decides either to 

resend the request to the same destination as before, to 

redirect it to the destination ranked second in the list, or to 

totally change the destination’s profile type and therefore 

to call again the “routing requirement inference” service. 

For example, a decision to resend a healthcare request to 

the same healthcare professional may be taken at run-time 

if the latter is accustomed to positively respond to the 

majority of healthcare requests and if he has a long 

experience and high knowledge of the patient’s health. 

The eHealth message routing management process ends in 

case of the triggering of the following two events: (1) The 

request is canceled by a healthcare professional (e.g. for 

false alarm reason) or by the patient (viz in case of pain 

disappearance), (2) The request is accepted by the 

healthcare professional. In the latter case, the two other 

processes, i.e. ecosystem supervision process and message 

status supervision process, also end. 

3. DBN simulation for routing 

requirements inference 

In this section, we highlight some of the issues raised 

when implementing the routing requirements inference 

sub-process. We capitalize on artificial intelligence 

technology and suggest using DBNs [5] to infer routing 

requirements which are   necessary for delivering a 

healthcare request to the right healthcare professional. 

These parameters can be: the required delays for message 

reception, reading or reply, the required routing means 
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(sms, mail, etc.), staff type (medical, paramedical), etc. 

To infer routing parameters, two major challenges must 

be taken up: time and uncertainty. Indeed, during 

message life cycle, the required staff type at time t for 

example will strongly depend on observations (e.g. 

message type, gravity level of clinical signs, message 

expeditor trust level, message routing state (initial, 

redirected)) at time t and at previous time t-1. Moreover, 

these observations may be computed from other atomic 

observations that may stem from uncertain sources (e.g. 

noisy sensors). At run-time the message may take several 

itineraries and follow heterogeneous routing policies 

according to observations evolving over time. To handle 

the dynamicity and uncertainty, we have adopted a DBN. 

A DBN is a BN (Bayesian Network) which relates 

variables   ,   ,.. to each other over adjacent time steps 

called time slices. These temporal connections 

incorporate conditional probabilities between variables 

based on the Markovian condition that the state of the 

system at time t depends only on its immediate past, its 

state at time t-1. A DBN is defined to be a pair, (B1, B→), 

where B1 is a BN which defines the prior P(Z1), and B→ is 

a two-slice temporal Bayes net which defines           

as follows:                 
  

         
    , where 

  
  is the i’th node at time and      

    are the parents of 

  
   in the graph [6]. Inference in DBNs is the task of 

computing the probability of each state of a node in a BN 

when other variables are known. The inference is 

performed by means of a belief propagation algorithm 

that updates the beliefs in each variable when new 

observations are assigned to variables. 

3.2.  Building a DBN structure based on 

HL7 attributes 

3.2.1.  DBN modeling 

Figure 2 shows a simplified DBN that we used to infer 

the routing parameter: “Required delay for message 

reading” in function of other variables constituting the 

Message contextual data (Gravity level of clinical history, 

of clinical signs, act priority, routing message state, trust 

level). The network is composed of identical sub-models 

duplicated over two time slices. The dependence between 

DBN variables are represented by conditional probability 

tables (CPT). The DBN reflects the evolving temporal 

process of the strategy of routing in function of the 

dynamicity of contextual data changes. For instance, the 

gravity level of clinical signs (chest pain, systolic 

and diastolic blood pressure, temperature, ECG 

interpretation, etc.) at time t may depend on the gravity 

level of clinical signs at time t-1. The required delay for 

message reading at time t may also depend on its value at 

time t-1. Links between two nodes indicate that there are 

probabilities relationships that exist between the states of 

these two nodes. For instance, the gravity level of the 

clinical history (old infarction, etc.) increases the 

probability of getting high gravity levels for clinical signs. 

Both “ActPriority”, “TrustLevel”, and 

“RoutingMessageState” can impact the “Required 

DelayForMessageReading”. 

3.2.2.  DBN variables interpretation 

referring to RIM attributes 

We distinguish two types of network variables: 

interpreted (trust level, gravity level of clinical history, of 

risk factors and of clinical signs) and non-interpreted (Act 

priority, routing message state). These variables aggregate 

several variables coming from the message expeditor 

ecosystem and the message content itself. In order to be 

compliant with international vocabulary specifications, we 

have built our model as much as possible on the HL7 

Reference Information Model (RIM), a shared and 

coherent health and health care information model from 

which all HL7 v3 messages data content are derived. In 

figure 2, only the variable Actpriority exists as an HL7 

RIM attribute. But several of the underlying attributes of 

these DBN variables are part of the RIM. They are typed 

in italics in the subsequent descriptions. For example, the 

gravity levels \ clinical signs\ clinical history are computed 

from Observation interpretation normality (Abnormal, 

Normal), Outside threshold (Above high threshold, Below 

low threshold) Severity observation (High, Low, Medium). 

It is important also to know about the trust level of the 

Author of the Act. Indeed, the required delay for message 

reading for example will depend on the fact that the 

message expeditor is a healthcare professional 

(cardiologist) or not (patient family member), if he is 

acquainted in using advanced IT services, accustomed to 

send false alarms, accompanied by a healthcare 

professional, etc. The result of the trust level computation 

will thus depend on the role played by the message sender 

in the triggering of the act. 

C1: if (participation type = Author and Role class = 

patient) then 

Trust level = f (living dependency, person 

disability, living situation, accompanying) 

C2: if (participation type = Author and Role class = 

caregiver) then 

Trust level = f (participation function, number of 

false alarm, knowledge about patient illness) 

The RIM Participation function attribute specifies the 

function played by the actor in the service. It can be an 

admitting physician, a discharging physician, a nurse 

assistant, etc. Let’s note that the patient himself can be a 

healthcare professional. In this case, the trust level is 

computed from the combination of the conditions C1, C2. 
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Figure 2. DBN simulation for the inference of the required delay of cardiology eHealth messages reading 

Moreover, the required delay for message reading will 

also depend on the routing message state (redirected, 

initial, canceled) and to the act priority (elective, routine, 

urgent, emergency).  

3.2.3.  DBN simulation scenario 

One major advantage of DBNs is the capacity of 

adaptability. We demonstrate by the following scenario 

example how adding knowledge about a particular 

attribute can adjust the probabilities values displayed in 

Figure 2 and thus influence the routing policy parameter.  

Scenario: Patient A has a history of cardiac disease. He 

visits his family living in a hostile environment 

(mountain), and takes his intelligent personal cardiac 

device with him. While arriving, he doesn’t feel well. 

Patient A records a personal ECG and the device 

automatically send a minor alarm to his admitting/referral 

physician. 

Case: Observation interpretation change - In between, 

patient A feels chest pain and an acute cardiac ischemia is 

detected by the device. The gravity level of the clinical 

signs has thus increased. This new knowledge constitutes 

an evidence or a finding entering into the DBN. As a 

consequence, this evidence propagates in the net and 

provides automatic adjustments in the nodes’ probabilities 

of the net. The belief updating is performed by a message-

passing algorithm operating on the underlying junction 

tree. As displayed in Figure 2, we are now almost 100% 

certain that the gravity level of clinical signs is now high. 

Thus, the probabilities of the required delays for message 

reading at time slice t are now totally different from the 

probability at time slice t-1, requiring now a “low” delay 

for reading the message.  

4. Conclusion

Taking the right message routing decision making and 

improving the quality of message transmission are one of 

the most prominent challenges for enhancing the 

management of cardiac diseases. Continuous changes in 

contextual data may make the routing decisional process 

difficult. In the present research, we aimed to develop a 

methodology that is as generic as possible in order to be 

compliant with different scenarios in the eHealth domain. 

We used BPMN diagrams to model a distributed system 

for the support of context- driven, adaptive and 

personalized cardiology eHealth message transfers. We 

also emphasize the use of artificial intelligence methods 

(e.g. DBN) to infer the routing requirements and to make 

the routing decisions intelligently adaptive according to 

context changes.  
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 time slice t-1  time slice t 

Actpriority1  [0]

Elective
Routine
Urgent
Emergency

68.0
2.65
24.6
4.75

Routingmessagestate1  [0]

Initial
Redirected
Canceled

55.5
25.0
19.5

Routingmessagestate2  [1]

Initial
Redirected
Canceled

20.9
61.8
17.2

Trustlevel

High
Medium
Low

33.3
51.8
14.9

Actpriority2  [1]

Elective
Routine
Urgent
Emergency

83.5
5.16
10.4
1.03

GravitylevelCH

High
Medium
Low

60.8
29.4
9.80

GravitylevelCH1

High
Medium
Low

60.1
29.9
9.97

GravityLevelCS1  [0]

High
Medium
Low

 100
0
0

RequiredDelayRead1  [0]

High
Medium
Low

79.7
5.97
14.4

0 ± 0

Trustlevel1

High
Medium
Low

35.7
48.2
16.1

RequiredDelayRead2  [1]

High
Medium
Low

5.29
3.93
90.8

0 ± 0

GravityLevelCS2  [1]

High
Medium
Low

 100
0
0
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