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Abstract
In this work we present a new method for the delineation

of QRS complexes in ECG signals. The main objective is
to provide a robust method that gives acceptable results
even under severe noise conditions in the input signal, as
often happens in continuous bedside or home monitoring.
Our method is based on relevant point selection using a
path simplification algorithm, and then a clustering strat-
egy combined with a qualitative description of the wave-
form is applied in order to select the most promising signal
segments to include inside the QRS limits. The validation
was performed by adding different levels of noise to the
records of a standard database, and then comparing our
proposal with a state-of-the art approach. Results show a
high sensitivity and stable error evolution even at the high-
est noise levels.

1. Introduction
ECG is one of the best known and most studied biosig-

nals in the field of intelligent signal processing. There
are a large number of databases, algorithms and methods
covering from simple heart rate measurement to the char-
acterization of a wide range of diseases, like myocardial
ischemia, sleep apnea, or chronic obstructive pulmonary
disease, among others [1, 2]. Despite new proposals ap-
pear incessantly, computer interpretation of the ECG is
still considered an open problem, and it seems we are far
from provide sufficiently satisfactory solutions to be trans-
ferred to clinical routine, integrated in the bedside instru-
mentation or in home monitoring settings. A clear proof
of this is the topic selected for recent Physionet challenges
in 2014 and 2015 [3, 4], encouraging the exploration of
methods for biosignal processing in poorly controlled sce-
narios. The posed problems are relatively simple and well
studied, but when existing solutions are transferred from
training databases to more demanding scenarios, the num-
ber of errors and false alarms is considerably increased.

This work addresses the QRS delineation problem, that
is, the identification of the onset and end boundaries of a
detected QRS complex. A proper QRS delineation makes
easier the identification of heartbeats origin, and therefore
empowers arrhythmia characterization and higher level

ECG analysis. It also may improve the specificity of QRS
detection algorithms by enforcing additional constraints on
the QRS waveform.

This problem has been addressed by various studies with
quite remarkable results. For example, a number of rele-
vant proposals are reviewed in [5], showing a great preci-
sion with errors in the order of a few milliseconds, even
exceeding the capacity of human experts. However, if we
try to apply these methods in scenarios presenting a low
signal quality compared with the reference databases, the
performance is greatly degraded. Therefore, our approach
poses a bit different objective: improve the stability against
high noise levels, as long as keeping the delineation error
within acceptable limits.

The rest of the paper is organized as follows: In sec-
tion 2 we detail the proposed algorithm and the intuition
behind it; section 3 describes the evaluation process, in-
cluding the generation of a test database and comparing
the results with a well known algorithm; finally, section 4
provides some conclusions.

2. Algorithm description
The delineation algorithm we propose, that we will call

qrsdel, is a multi-lead procedure decomposed in various
stages, depicted in figure 1.
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Figure 1. Delineation algorithm steps
As a preliminary step, a temporal window is defined

from a punctual beat annotation, that may be obtained by
any QRS detection procedure. This window starts 80 ms
before the annotation and finishes 200 ms after it, deter-
mining the signal fragment used by the subsequent steps.
Note that we assume the annotation to be located near the
beginning of the QRS complex, as is usual in most of the
state of the art QRS detection algorithms, such as those
included in the WFDB toolbox [2].
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2.1. Lead ordering

The first step of the algorithm is to take all signal frag-
ments from every available ECG lead and sort them using
the kurtosis as a signal quality indicator [6]. This ordering
will determine the priority in the selection of the delin-
eation points in later stages.

2.2. Path simplification

Path simplification [7] is the underpinning technique of
qrsdel. The basic idea is to reduce the signal fragment
containing the QRS complex to a small number of straight
line segments, while preserving the basic waveform of the
complex. The assumption this model makes is that, de-
spite how noisy the signal is, the QRS complex is the most
prominent element in the region surrounding it.

Figure 2 illustrates this idea. We can see the original
signal in light gray color, the ski

points selected by the
path simplification algorithm, and the signal reconstructed
using only that points. The solid and dashed segments cor-
respond with the delineation of the QRS complex.

sk0

sk1

sk2

sk3

sk4

Figure 2. QRS signal and its simplification

The algorithm we selected to perform signal sim-
plification is a minor variation of the Douglas-Peucker
method [7], considering only amplitude differences for
point selection. The input for this algorithm is a signal
fragment s as a sequence of n samples (s0, . . . , sn−1); an
integer p, with 2 ≤ p ≤ n, representing the maximum
number of points that can be included in the simplification;
and a value d > 0 representing the minimum amplitude
difference that can be considered to include a point in the
simplification. As output, the algorithm returns a sequence
rp = (k0, . . . , km−1), with 2 ≤ m ≤ p, representing the
indices of the samples selected for the simplification. The
operation is detailed in algorithm 1.

In this algorithm, the simplification always contains the
endpoints 0 and n−1, and it is extended by adding at each
step the point with maximum vertical distance to the seg-
ment defined by the linear interpolation (INTERP function)
between any consecutive pair of points already included in
the simplification. The procedure finishes when the maxi-
mum number of points is reached, or if none of the points

Algorithm 1 Douglas-Peucker simplification algorithm
1: function DOUGLAS-PEUCKER(s, p, d)
2: let rp = (0, n− 1)
3: let s′ = INTERP(s0, sn−1, n)
4: let M,k = max(|si − s′i|), i ∈ [0, n− 1]
5: while |rp| < p ∧M > d do
6: rp = rp ∪ {k}
7: M = 0
8: for all j ∈ [0, . . . , |rp| − 2] do
9: s′ = INTERP(skj

, skj+1
, kj+1 − kj)

10: M ′, k′ = max(|si−s′i−kj
|), i ∈ [kj , kj+1]

11: if M ′ > M then
12: M,k =M ′, k′

13: return rp

exceeds the minimum amplitude difference.
In the qrsdel procedure, the DOUGLAS-PEUCKER algo-

rithm is executed on each lead using as parameters p = 9
and d = 50µV . The value of p is determined by the max-
imum complexity of the waveform that can be recognized
(see for example the qrSRS pattern in figure 3), while d has
been selected as the minimum peak-to-peak amplitude dis-
tance for a wave to have diagnostic implications in routine
electrocardiography [8].

2.3. Peak estimation

The next step is to estimate the temporal location of the
peak of the QRS complex. In each lead, the peak is se-
lected according to the following equation:

maxr

(
|sr − b|

1 + 2·|r−t|
150

)
, r ∈ [0, . . . , n− 1]

where t is the time point of the annotation in ms, and b is
the baseline value, estimated as the mode of the signal in
a temporal window of 1 second around the time point of
the annotation. This equation selects the point with high-
est deviation from the baseline, but it applies a distance
function with respect to the beat annotation. Initially, the
peak is selected from the best quality lead, but if the peaks
in other leads are within a 40 ms margin, the earliest one is
taken as reference.

2.4. Delineation and pacemaker detection

At this point, QRS delineation itself is performed. To
this aim, the segments resulting from path simplification
are clustered using a k-means strategy, using the following
two features extracted for each segment (ski

, ski+1
):

f1 = ln

(
1 +

∣∣∣∣ (ski+1 − ski)

(ki+1 − ki)

∣∣∣∣) , f2 =

{
r − ki, ki < r

ki+1 − r, ki ≥ r
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The f1 feature represents the slope of each segment, while
f2 represents the distance to the peak estimation r. The
k-means procedure is executed taking as centroids c1 =
(max(f1),min(f2)) and c2 = (min(f1),max(f2)), and
the limits of the QRS are set as the limits of the longest se-
quence of segments in the c1 cluster, requiring the presence
of at least one slope change. Figure 2 shows a delineation
example, with segments {(sk1

, sk2
), (sk2

, sk3
)} ∈ c1, and

{(sk0
, sk1

), (sk3
, sk4

)} ∈ c2.
The selection of the slope as a key feature causes that

the presence of pacemaker spikes, which usually show ex-
treme slopes, strongly affects the clustering results. For
this reason, we include a prior stage to determine the pres-
ence of a paced QRS complex, by looking for a signal wave
satisfying the following constraints: (1) a duration smaller
than 30 ms, (2) ascent and descent angles higher than 75o,
(3) an amplitude higher than 0.2mV, and (4) a rising edge
of higher amplitude than the falling edge. If all these con-
ditions are satisfied, we assume the presence of a paced
beat, and the clustering results are only used to determine
the end of the QRS complex, setting as its onset the begin-
ning of the spike.

2.5. Limits combination and waveform
characterization

At this point, we have the limits estimation for the QRS
complex in every available lead. The next step then is to
combine them, using the same strategy we followed to set
the peak estimation. Initially, the endpoints are considered
only from the highest quality lead, and then are expanded
using the endpoints in other leads only if the difference
with the current estimation is lower than 40 ms. If we have
detected a pacemaker spike in any lead, then the beginning
of the QRS is always the beginning of the spike.

The next step consists of performing a qualitative char-
acterization of the waveform delineated in each lead. For
this, we consider the line segments as a sequence of waves,
and each wave is labeled with the common names q, Q, r,
R, S, etc. based on its position and positive/negative po-
larity [8]. Then, the longest sequence with a recognizable
tag is selected for each lead, and the delineation limits are
refined to fit these limits. Figure 3 shows some examples
of recognized waveforms, from a total of 27.

Finally, to accept the delineation as valid, we check
some common electrocardiographic constraints. Specifi-
cally, we require that at least in one lead we have identified
a recognizable QRS pattern with an amplitude between 0.5
mV and 6 mV. If this requirement cannot be satisfied, then
we consider sufficient to have an identified pattern in most
leads. If none of this conditions can be met, then we dis-
card the annotation, considering it as a false positive.
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Figure 3. Some recognized QRS qualitative tags

3. Evaluation

The gold standard for the evaluation of ECG delineation
algorithms is the QT database [9]. However, the set of
records included in this database are more focused on the
evaluation of the precision and the capability of the algo-
rithms to deal with a wide variety of waveforms, and the
signal quality is usually high. As long as our main ob-
jective is to assess the robustness of qrsdel, we have gen-
erated a new database by adding different noise levels to
the original records of the QT database, and then we com-
pared the behaviour of our algorithm with the results of the
ecgpuwave application [2], since it is the only reference al-
gorithm we are able to test with the new generated records.

To generate the test database, we have relied on the nst
application [2], using the noise model recommendations
from [10]. For each record in the QT database we created
5 new records by adding electrode motion noise at different
Signal-to-Noise ratios. Selected SNRs were 24 dB, 12 dB,
6 dB, 3 dB and 0 dB.

Table 1 shows the sensitivity and measurement errors
for the qrsdel and ecgpuwave algorithms at different noise
levels. Since ecgpuwave is a single-lead algorithm, we cal-
culated the errors using all the measurements that can be
obtained in the available leads. Figure 4 illustrates these re-
sults, allowing to appreciate the different behaviour of both
algorithms as noise level increases. Light-grey shaded re-
gions represent the standard deviation of ecgpuwave, while
the dark regions represent the standard deviation of qrsdel.
Even if ecgpuwave shows lower errors at reduced noise
levels, it can clearly be seen that the error behaviour is far
more stable for the qrsdel algorithm, both for the mean and
for the standard deviation. It is also worth noting the evolu-
tion of the sensitivity, showing a significant degradation in
the case of ecgpuwave, while in qrsdel it is barely reduced
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Figure 4. Error comparison for the qrsdel and ecgpuwave algorithms

SNR Se QRS Onset QRS Peak QRS Offset

Original QD 100 13.09±17.48 -11.47±12.01 -2.41±22.34
EC 96 -5.87±19.03 -2.59±16.16 -1.83±20.80

24 dB QD 100 13.12±18.24 -11.64±12.30 -2.47±23.21
EC 96 -7.60±21.85 -2.84±16.47 -0.01±23.70

12 dB QD 100 10.82±20.96 -11.48±12.75 1.17±26.16
EC 95 -17.51±32.89 -2.04±20.41 10.96±38.66

6 dB QD 100 8.42±23.76 -11.44±13.89 7.22±32.89
EC 91 -27.05±50.44 -2.17±41.73 26.46±57.45

3 dB QD 100 6.50±25.07 -12.09±16.56 12.78±39.98
EC 88 -32.64±64.31 -3.05±54.44 38.45±68.36

0 dB QD 99 5.47±28.19 -11.48±21.24 18.60±46.85
EC 85 -35.41±72.14 -6.40±65.80 48.04±76.14

Table 1. Sensitivity (%) and delineation errors (ms) for
the qrsdel (QD) and ecgpuwave (EC) algorithms.

from 100% even at the 0 dB SNR noise level.
Regarding the accuracy of the results, although it is not

a primary goal of this work, it is necessary to ensure that
the errors remain within acceptable limits. In this case, the
majority of errors and standard deviations stay within 0.5
mm in common electrocardiographic scale (20 ms), and
only for the QRS offset and with a SNR of 0 dB the stan-
dard deviation slightly exceeds the range of 1 mm (40 ms).
We consider these margins admissible to provide a coarse
approximation of the QRS waveform in noisy conditions.

4. Conclusions

In this work we presented qrsdel, a new algorithm for ro-
bust delineation of QRS complexes in multi-lead ECG sig-
nals based on a path simplification technique, and we com-
pared it with a state-of-the art algorithm, proving a more
stable behaviour against signals with high noise levels. We
believe this proposal can be very valuable in poorly con-
trolled monitoring scenarios, like bedside or home moni-
toring, and therefore we have released it as free software
under the terms of the LGPLv3 license1. We also pub-
lished the source code needed to generate the test database
and replicate the experiments shown in this paper.

1https://github.com/citiususc/qrsdel
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