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Abstract 

Genome-wide association studies (GWAS) and next-
generation sequencing (NGS) has led to an increase in 
information about the human genome and cardiovascular 
disease.  

Understanding the role of genes in cardiac function 
and pathology requires modeling gene interactions and 
identification of regulatory genes as part of a gene 
regulatory network (GRN). Feature selection and data 
reduction not sufficient and require domain knowledge to 
deal with large data.  

We propose three novel innovations in constructing a 
GRN based on heuristics. A 2D Visualised Co-regulation 
function. Post-processing to identify gene-gene 
interactions. Finally a threshold algorithm is applied to 
identify the hub genes that provide the backbone of the 
GRN. The 2D Visualized Co-regulation function 
performed significantly better compared to the Pearson’s 
correlation for measuring pairwise associations (t=3.46, 
df=5, p=0.018). The F-measure, improved from 0.11 to 
0.12. The hub network provided a 60% improvement to 
that reported in the literature. The performance of the 
hub network was then also compared against ARACNe 
and performed significantly better (p=0.024).  

We conclude that a heuristics approach in developing 
GRNs has potential to improve our understanding of gene 
regulation and interaction in diverse biological function 
and disease. 

1. Introduction

The advent of more advanced and faster gene 
sequencing programs for genome-wide association 
studies (GWAS) and next-generation sequencing (NGS) 
has led to a plethora of information about the human 
genome and cardiovascular disease (CVD in particular 
that requires novel approaches for determining gene 
regulatory networks (GRN). Information on cardiac genes 
consists of several databases that are difficult to combine 
with traditional gene regulatory network (GRN) models 

as they address heart evolution, cardiac development, 
function, cardiac conduction systems and cardiac 
pathology separately and therefore are based on different 
heuristics. As an example, well above one hundred heart 
rhythm determinant genes that are sex-dependent have 
been identified [1], with many more associated with 
development, function and pathology. Restricting GRN 
studies to possible disease biomarkers disregards genes 
associated with controlling expression of downstream 
genes and interconnection of gene regulatory pathways. 
Thus co-occupancy of transcription factors located on 
chromatin has been used to identify cardiac enhancer 
genes with ChIP and high-throughput sequencing (ChIP-
seq) identifying thousands of prospective cardiac 
regulatory sequences associated with gene enhancers [2]. 
To this complexity of large data has now been added 
miRNA studies that indicate their role in gene function 
and regulation as well as additional complex mechanisms 
associated with cardiac development including 
transcriptional and post-transcriptional mechanisms [3, 
4]. Understanding these regulatory gene interactions that 
are the basis of gene expressions and functions, still 
remains a difficult task. Although several methods have 
been proposed to infer gene regulatory (interactions) 
networks from gene expression data, most current 
methods have limited accuracy due to the curse of 
dimensionality where the number of genes far exceed the 
number of observations [5]. Feature selection and data 
reduction attempt to address this but computational and 
statistical techniques are not sufficient and require 
domain knowledge [6, 7]. A great deal of knowledge is 
known heuristically about GRNs and the nature of gene 
interactions but few studies have incorporated heuristics 
into a GRN discovery process. Heuristics can aid the 
GRN discovery process by identifying heuristics related 
to the nature of gene interactions [8] and heuristics related 
to the structure of the gene network applying the greedy 
hill-climbing algorithm, simulated annealing or the K2 
algorithm[9]. GRN are graphs with scale-free properties 
where most genes are connected to a small number of 
global transcription factor genes referred to as Hubs [10]. 
This paper proposes the use of hub genes as a meaningful 
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heuristic approach in GRN discovery. 

2. Methods

The heuristic framework adopted here is based on first 
implementing a co-regulation function which measures 
pair-wise dependencies between genes. Results are then 
post-processed to reduce false positives and finally a hub 
network is designed to construct the backbone of the 
GRN. 

2.1. 2D Visualised co-regulation 

To allow for multiple two-gene interactions a 2D 
Visualised Co-regulation function is proposed based on a 
frequentist approach by constructing a matrix comprising 
discretized expression levels for one gene along rows and 
for the other genes along columns. The matrix provides 
normalized data on how often two genes have appeared or 
being expressed, in one sample as either high in both 
samples (HH), low in both samples (LL), high-low (HL) 
or low-high (LH). These interactions are related to the 
possible up or down or dual regulation by genes in the 
network. 

2.2. Post-processing 

Post-processing is required to identify when a gene 
directly up or down- regulates another gene and also for 
indirect relationships when the interaction is mediated 
through a chain of intermediary genes [11]. The post-
processing step eliminates false positive interactions by 
looking for the absence of the reverse interaction that is 
HL is a reverse interaction to HH. To eliminate these 
false positives we apply a simple rule: 

𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 <
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻

< 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢 (1) 

The user-defined lower threshold was set at 10% and the 
upper threshold at 60%. 

2.3. Identification of hubs 

The final step was to use hubs to construct the 
backbone on which the GRN can be built [12]. The first 
layer of the GRN was built by first calculating the co-
regulation measure for all genes in the expression data. 
This is followed by the post-processing and background 
correction steps and finally selecting highly connected 
genes based on the previously mentioned threshold of the 
hub’s connectivity. This resulted in a network of hubs, 
which formed the backbone structure of our target 
network. The second layer of the GRN is made up of 

genes that are the most strongly connected to the hub 
nodes using a weights function and applied a background 
correction by first normalizing the correlation values 
between each gene and any other genes and then filtered 
out those which were less than 0.5 starting at the top of 
the list of genes interacting with this gene. The GRN is a 
scale free made up of three categories of genes based on 
their degree of connectivity, which was set at 15. In our 
heuristic selection procedure if the degree of the node was 
less than 15 (identified as being the average hub degree in 
the biological network literature), the node was selected 
exactly according to its connectivity degree otherwise it 
was selected according to: 

𝑛𝑛 = �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 < 15
15 + (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 15) ∗ 0.3, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 15 

2.4. Dataset 

To compare the performance of our proposed system with 
other systems, we assembled a gold standard network 
with a known level of biological and experimental noise, 
and regulatory relationships with SynTReN, which uses 
known network parts to build a simulated network [13] 

2.5. Statistics 

F-measure was applied to indicate accuracy of the 
heuristics. The F-measure is defined by the harmonic 
mean of positive predictive power (PPV) and specificity 
(S): 

  𝐹𝐹 = 2𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃+𝑆𝑆

3. Results

The 2D Visualized Co-regulation function performed 
significantly better compared to the Pearson’s correlation 
for measuring pairwise associations (t=3.46, df=5, 
p=0.018). The F-measure, defined as the harmonic mean 
of the positive predictive value and sensitivity improved 
from 0.11 to 0.12. Applying the heuristic post-processing 
improved the F-measure further to 0.19. The hub network 
provided a 60% improvement to that from the literature 
[14, 15]. The performance of the hub network (F=0.17) 
was compared against ARACNe (0.11) and performed 
significantly better (p=0.024) [16]. 

4. Discussion

We developed a novel technique for Gene Regulatory 
Network discovery that integrates heuristic information 
into the discovery process. The heuristic model is 
conceptually simple and computationally efficient. Our 

 

 

  



current results using the co-regulation, post-processing 
and hub modelling heuristic demonstrates that this model 
has the potential to derive an accurate GRN architecture. 
Integration of data from different sources has the potential 
for GRNs to be more accurate and relevant to biology and 
medicine. Future research needs to extend to applying the 
heuristics to functional gene sets in combination with our 
Hub Network [17]. Related gene sets to a hub can be 
retrieved and information about other genes in the gene 
set can be used to build a GRN more effectively. 
Performance of the 2D Visualised Co-regulation function 
could also be further improved by sophisticated 
discretization methods such as reported by Fayyad and 
Irani's MDL [18]. The heuristic methods described here 
may be valuable for building dynamic regulatory 
networks in cardiac cell development and function that 
also contain some uncertainty [19, 20]lengths. 
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