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Abstract 

Segmentation of left ventricular (LV) endocardium 
from 3D echocardiography is important for clinical 
diagnosis because it not only can provide some clinical 
indices (e.g. ventricular volume and ejection fraction) but 
also can be used for the analysis of anatomic structure of 
ventricle. In this work, we proposed a new full-automatic 
method, combining the deep learning and deformable 
model, for the segmentation of LV endocardium. We 
trained convolutional neural networks to generate a 
binary cuboid to locate the region of interest (ROI). And 
then, using ROI as the input, we trained stacked 
autoencoder to infer the LV initial shape. At last, we 
adopted snake model initiated by inferred shape to 
segment the LV endocardium. In the experiments, we used 
3DE data, from CETUS challenge 2014 for training and 
testing by segmentation accuracy and clinical indices. 
The results demonstrated the proposed method is 
accuracy and efficiency respect to expert’s 
measurements. 

1. Introduction

Cardiac left ventricular plays a crucial role in the 
cardiac functions and diagnosis of cardiac disease. Hence, 
LV volume estimation has attracted much research 
attention, and segmentation of left ventricular 
endocardium from 3D echocardiography (3DE) has 
become a hot topic. Although this is a challenging task, 
which has to handle many problems inherent in 
ultrasound imaging, such as low signal-noise ratio, edge 
dropout and artifacts, researchers have proposed many 
methods to segment the left ventricular endocardium from 
3DE. The typical proposed method can be classified as: 
deformable models, statistical models and classification 
methods. 

Deformable models are the most common methods of 
the segmentation of LV endocardium, which translate the 
problem to an optimization of energy function which is 
defined by the geometrical constraints. [1] proposed a 
coupled deformable model which used the speckle 

statistics information and volume information to form and 
evolve two surfaces to segment the myocardium. This 
method can make an automatic segmentation of the full 
myocardium. Due to intensity distribution of ultrasound 
tend to Gaussian approximately, [2] combined region- 
and edge-based level to acquire coarse shape, then 
adopted this coarse shape as the initial boundary and 
additional constraint to deform to segment 
echocardiography. [3] made a motion prior energy as the 
new constraint of level-set to track the whole 
myocardium, and used anatomical and image information 
to adjust hyperparameters. Although many researches 
have shown deformable models are successful, the 
models depend much on the initialization and image 
conditions. 

Statistical models, such as active shape model and 
active appearance model, are based on large labeled 
information from experts. [4] used a 3D active shape 
model whose parameters were updated by an extended 
Kalman filter to segment 3D cardiac ultrasound and the 
results were promising. [5] proposed a model driven 
method combining 3D Active Shape Model with local 
appearance models to segment 3D left ventricular and 
quantify the left ventricular function. The experiments 
results suggested the proposed method can achieve 
acceptable accuracy for the segmentation of fast rotating 
ultrasound. [6] developed Multiview, multiframe and 
landmark, and dynamic programming constrained active 
appearance models. Local edge detector was incorporated 
into these models. Comparing the experiments results, 
dynamic programming constrained model is better than 
the landmark constrained model and active appearance 
model. Due to depending on a large annotated dataset, 
initialization and assumption of shape and appearance [7], 
statistical models are limited for the segmentation of LV. 

Classification methods train classifier which is based 
on different features to segment LV. [8] proposed an 
automated method and system which used knowledge-
based probabilistic model and marginal space learning 
and can be used to detect standard multiplanar 
reformatted planes. [9] combined the particle filters with 
restricted Boltzmann machines achieved competitive 
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tracking results. Analogous to statistical models, 
classification methods also need a large number of data. 
However, classification methods do not depend on 
assumption of shape and appearance. 

Recently, deep learning methods are widely used to 
analyse different images, such as natural images[10] and 
medical images [11-13], and achieved better results. In 
this paper, we proposed a full-automatic method for 
segmentation of the left ventricle from 3DE using deep 
learning and deformable model. The experiments results 
show a good agreement with expert’s measurements. 

2. Methods

Inspired by the paper [14], there are three parts of our 
method combining deep learning and deformable model. 
As Figure 1 shown, they are the location of the region of 
interest (ROI) (using convolutional neural network), the 
inference of LV initial shape (using stacked autoencoders) 
and segmentation (using GVF-Snake). 

2.1. Location of the region of interest 

Accuracy and efficiency are important for the 
segmentation algorithm of LV. To improve the accuracy 
and efficiency of our algorithm, we located the region of 
interest (ROI). 

Due to 3DE data, we acquired a slice from the middle 
position of the original volumes for every volume firstly. 
These slices representing original volumes were treated as 
the inputs of the convolutional neural network. The 
convolutional neural network contained one 
convolutional layer, one pooling layer and one fully 
connected layer. For convolutional layer, there were 16 
filters whose size is 31*31. We also adopted the sigmoid 
as the activation function. Feature maps were acquired by 
convolved input images. We used maximum pooling to 
sub-sample the feature maps. The size and stride are 2*2 
and 2, respectively. And then, the pooling features were 
used as the inputs of fully connected layer which had 512 
units and achieved logistic regression. At last, we 
acquired the center of mask. Because of the center of ROI 
is same with the center of the mask, we cropped a ROI of 
size 128*128. 

Based on the mask, we built a cuboid which size is 
128*128*h. For every volume, h denotes the maximum 
value of z-axis. This cuboid was used for the location of 

region of interest in 3D volumes. 

2.2. Inference of LV initial shape 

Deformable models depend much on initialization. So, 
a good initialization is needed for our segmentation 
algorithm. In this paper, a stacked autoencoder was used 
to infer the LV initial shape.  

Stacked autoencoder [15] , which treats the outputs of 
previous layer as the inputs of the next layer, consists of 
several sparse autoencoders. Figure 2 shows the details of 
stacked autoencoder. The computation of stacked 
autoencoder is following: 

( * )k k
k kz f w a b= +               (1) 

1 1( )k ka f z+ +=    (2) 
Our stacked autoencoder had one input layer, three 

hidden layer and one output layer. For every ROI, we 
acquired three slices of volume. We used these slices as 
the inputs of the stacked autoencoder. Finally, we got 
three binary masks, which had the corresponding 
contours of slices of ROI. Based on these contours, we 
reconstructed initial appearance of ROI. 

2.3. Segmentation 

In this paper, we used three-dimension GVF-snake to 
segment 3DE. Analogous to two-dimension deformable 
models, three-dimension GVF-snake is also based on the 
optimization of energy function. When the energy 
function achieved the minimum, GVF-snake acquired the 
three-dimension contours of objects. The three-dimension 
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Figure 1. The proposed method combining the deep learning and deformable model. 
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Figure 2. The Structure of Stacked autoencoder. 

 

 

  



contour and energy function are defined as formula (3) 
and formula (4), respectively: 

( ) [ ( ), ( ), ( )]X u x u y u z u= , 1 2( , ) [0,1]*[0,1]u u u= ∈  (3) 
2 2 22

1 , 1
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= =
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The first term and second term are internal energy and 

external energy, respectively. iX and i jX are the first-
order term and second-order term of X , and they are 

controlled by parameter α and β . The first-order term
makes the contour plain and the second-term makes the 
contour continuous. The energy function is also 
optimized by gradient descent.  

3. Results

3.1. Datasets 

We used 3DE data from CETUS challenge 2014 [16] 
for training and testing by segmentation accuracy (the 
mean of mean surface distance dM, hausdorff surface 
distance dH, modified dice similarity index D*). There 
are 45 sequences of 3D ultrasound volumes, 15 volumes 
of training set and 30 volumes of test dataset. 

3.2. Metrics 

In term of mean surface distance (dM), hausdorff 
surface distance (dH), modified dice similarity index (D*), 
we compared the accuracy of our method with the ground 
truth from cardiologist [16]. S and tS denote the surface
from proposed method and surface from ground truth, 
respectively. Mean surface distance measures the mean 
distance between S and tS , it can be computed by 

)],(),([
2
1 SSdSSdd ttM += . (5) 

Here, ),( tSSd indicts the mean distance between every 

voxel from S and the closest voxel from tS , the 

),( SSd t is computed in similar way. Hausdorff surface 

distance measures the maximum distance between S  and 

tS . Modified dice similarity index measures the overlap 

of surface and is computed by 
tVV
VVD

+
∩

=
)(2 t* . V and 

tV denotes the volume from proposed method and ground 
truth. 

Otherwise, the clinical performance of our method was 
measured by the modified correlation (corr*) and 
standard deviation (std) of end-diastolic volumes (EDV), 

end-systolic volumes (ESV) and ejection fractions. EF is 
calculated by  

EDV ESVEF
EDV
−

=    (6)

And modified correlation is the difference between 1 
and correlation. 

3.3. Experiments results and discussion 

Table 1 showed the statistical results of ED and ES of 
mean surface distance, hausdorff surface distance and 
modified dice similarity index. These results illustrated 
that our method can achieve high accuracy. The location 
of ROI and inference of initial shape improved the 
accuracy of segmentation. The location of ROI made the 
influence of the surrounding tissue of segmentation lower. 
Meanwhile, the location also saved computing time. The 

inferred shapes were good initializations of deformable 
model. They closed to the contours of volumes, which 
made optimization of deformable model was better and 
faster. It means that the location of ROI and inference of 
initial shape improved the accuracy and efficiency, 
simultaneously. 

Figure 3 showed the evaluation of clinical index, 
which compared the results of the proposed method with 
the ground truth. The modified correlation values of EDV, 
ESV and EF are 0.39, 0.40 and 0.267 respectively, and 
the corresponding standard deviations are 18.2 ml, 15.7 
ml and 6.9. The agreement between our method and 
ground truth is low. However, it also suggested that our 
method is acceptable and has potential clinical 
applicability of LV volume estimation. To improve the 
segmentation accuracy and agreement with the ground 
truth, larger dataset and modified deformable model are 
needed. Larger dataset can be used to train and validate 
deep learning model. In this way, the location of ROI and 
initial shape will be better. Modified deformable model 
can provide other constraints which make the contour 
closer to ground truth. 

4. Conclusion

In this paper, we proposed a new full-automatic 
method, combining the deep learning and snake, for the 
segmentation of LV endocardium. Deep learning was 
used to locate the region of interest and infer the initial 
shape. Deformable model which was initialized by the 

Table 1. Print sizes for different parts of the manuscript. 

dM 
(mm) 

dH 
(mm) 

D* 
(val) 

ED 2.20 8.34 0.112 
ES 2.56 8.46 0.160 

 

 

  



inferred shape is used to segment the LV endocardium. 
Experiments results which were measured by the 
accuracy and clinical performance demonstrated the 
proposed method is accuracy and efficiency and respect 
to expert’s measurements. 
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Figure 3. Correlation graphs for EDV, ESV and EF. 
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