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Abstract

Analysis of heart sounds is a popular research area for
non invasive identification of several heart diseases. This
paper proposes a set of 88 time-frequency features along
with five different methodologies for classifying normal
and abnormal heart sounds. State of the art approach
was applied for segregating the fundamental heart sounds.
Apart from a baseline two class classifier, separate classi-
fiers for long and short heart sounds were also explored in
order to get rid of the dependency of features on the dura-
tion of the recordings. Finally, a three class classifier was
explored to deal with the noisy data present in the dataset.
Both balanced and unbalanced sets were considered for
crating of the training models. A comparative analysis
showed that, out of all the methodologies, the three class
classifier based approach produces the most optimum per-
formance by simultaneously yielding high values of both
sensitivity and specificity.

1. Introduction

Automatic classification of normal and abnormal heart
sounds has been extensively studied over the last few
decades. Heart sound signals, commonly known as phono-
cardiogram (PCQG) is typically captured using a digital
stethoscope and is known to carry useful information re-
garding many cardiac abnormalities.The state of the art
techniques employ a number of steps for classifying nor-
mal and abnormal heart sounds, including pre-processing
of noisy data, identification of the fundamental heart
sounds, followed by feature extraction and classification.
Wavelet based features [1] and spectral features, obtained
from FFT [2] was widely used in literature to identify car-
diac abnormalities. More complex features like Mel fre-
quency Cepstral Coefficients (MFCCs) were also investi-
gated in [3] using Hidden Markov Model. However, due to
the vulnerability of PCG towards ambient noise in audible
range, variation in sensor quality and the location of data
acquisition, automatic classification of PCG is a challeng-
ing task till date.
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An extensive corpus of PCG was provided in the Physionet
2016 challenge for classifying normal and abnormal heart
sounds. The dataset is detailed in [4]. In summary, a total
of 3153 heart sounds, including 2488 normal and 665 ab-
normal recordings are available in the corpus, partitioned
in six subsets. In this paper, we have proposed five method-
ologies for robust classification of normal/abnormal heart
sounds using machine learning approach. Our contribu-
tions are 1) inspecting a wide list of time-frequency fea-
tures for heart sound classification, 2) identifying separate
feature sets to deal with the variation in data length, 3) cre-
ating a three class classifier to identify the noisy data. Rest
of the paper is organized as follows, Section 2 describes
different features used in this paper for classification. The
five proposed methodologies are detailed in Section 3, fol-
lowed by experimental results and conclusions in Section 4
and 5 respectively.

2. Segmentation and Feature Extraction

Each complete cycle inside a PCG signal typically con-
tains two prominent heart sounds, namely S1 and S2.
S1 precedes the systole whereas S2 precedes the diastole
region. Accurate segregation of the fundamental Heart
sounds (FHSs) is considered as the major prerequisite of
any kind of analysis job dealing with PCG. There is a vast
literature available ([5], [6]) for automatic segregation of
hearts sounds. All recordings in the dataset is sampled at
2000 Hz. Raw PCG is further down sampled at 1000 Hz,
in order to segregate four cardiac states (S1, systole, S2
and diastole) using the logistic regression based HSMM
approach, developed by Springer et al [7]. A wide list PCG
features were extracted subsequently.

A total of 88 features were explored in this paper. First 20
time domain features are related to the arithmetic mean and
standard deviation of the intermediate distance between
different cardiac states and are detailed in [4]. These fea-
tures contain information regarding individual heart beat
as well as heart rate variability (HRV). Feature 21 mea-
sures the standard deviation of the successive differences
between adjacent NN intervals. Feature indices 22 to
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Figure 1. Block Diagram of Proposed Methodology.

37 measures the normalized spectral power within the fre-
quency range of 0-20 Hz, 20-40 Hz, 40-60 Hz and 60-80
Hz respectively for S1, systole, S2 and diastole regions.
Features 38 to 45 are the magnitude and phase angles of
the first four poles of the diastolic regions, modeled us-
ing autoregressive (AR) model. The diastolic portion is
sub segmented into non-overlapping windows of 50 ms
and each window is modeled with a 10th order autore-
gressive (AR) model. Finally the median across all the
sub-segments are considered as representative feature val-
ues. Features 46 to 53 represent the mean and standard
deviation of the spectral centroid across all S1, systole,
S2 and diastole segments in a recording. Features 54 to
60 represent the spectral power between 0-100 Hz in five
equal frequency bands as well as the mean and standard
deviation of the spectral centroid for the entire spectrum
for all complete cardiac cycles. The next 26 features are
the mean and standard deviation of 13 dimensional MFCC
coefficients. To extract these features, the entire signal is
broken into 250 ms windows with 100 ms overlapping us-
ing hamming window. The signals are analysed upto 300
Hz for extracting the coefficients. The final two features
are wavelet related features, extracted from the diastolic
portion. The diastolic portion is decomposed upto third
level using ’Reverse biorthogonal 3.9’ (rbio 3.9) mother
wavelet. The median values of the mean and the standard
deviation of the third level detailed coefficients across all
the segments are included in the feature list.

3. Methodologies

A total of five different methodologies have been ex-
plored in this paper. The optimum feature list for each of
them is selected from the exhaustive lists of 88 features by
ranking them based on Maximal Information Coefficients
(MIC) [8] scores. Our different methods (as shown in Fig-
ure 1) are detailed subsequently.

3.1. Method 1: Baseline Two Class Classi-

fier

In the baseline approach, a simple two class classi-
fier is designed for classifying normal and abnormal heart
sounds. It was observed that each subset(a to f) of the
entire dataset provided in[4] is highly unbalanced. Hence,
in order to ensure a balanced training, all instances of the
minor class, along with equal representation of the other
member class is drawn at random from each of the sub-
set. This random under-sampling, resulted in a total of 944
recordings from the entire set. Top 31 most significant fea-
tures were selected for performance evaluation.

3.2. Method 2: Baseline Method on Unbal-

anced Recordings using all Features

Due to highly unbalanced ratio of normal and abnormal
classes in each of the subsets, random under-sampling of
majority class leads to removal of a significant number of
observations. Hence, in method 2, we applied the base-
line method on the entire corpus of unbalanced recordings.
Further, the analysis is done using all 88 features to miti-
gate the effect of possible information loss occurred due to
exclusion of certain feature in method 1.

3.3. Method 3: Separate Models for Long

and Short Recordings

It was observed in method 1 and 2 that, the overall clas-
sification accuracy obtained on the long recordings (min-
imum duration of longer than 10 seconds) is significantly
higher compared to the short recordings (duration less than
10 seconds). It was also observed that, small recordings are
mostly present in one of the partitions (set b) of the entire
dataset. The signal quality of the small recordings are also
very poor compared to others. We defined the following
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Figure 2. Signal Quality Comparison between Long and
Short Data.

metric (Ps;4) to measure the signal quality of the PCGs.
P, = median(Pg;q/max(Ps1, Ps2)) €))

For a noisy recording, the S1 and S2 peaks are often sup-
pressed by the noise, induced in systole and/or diastole.
Due to its prolonger duration, the diastolic portion is gen-
erally more vulnerable. Thus the ratio between diastolic
power (FPy;,) and power of S1 or S2 becomes compara-
ble. Resulting in a higher value of Pg;,. The value of Ps;,
should ideally be lesser for a recording of good signal qual-
ity. Figure 2, shows the values of Py;, of more than 120
long and short recordings, drawn at random from the entire
dataset. It is evident that the small recordings are generally
nosier than the longer recordings owing to the lesser values
of Psug. It is also evident that certain features, mostly re-
lated to HRV are often not captured properly in the record-
ings of very shorter duration. Thus the feature lists for long
and short recordings for classifying abnormal heart sounds
are expected to be different. So, instead of a single two
class classifier, we decided to create two separate classi-
fiers for long and short data respectively. A total of 684
long and 260 short recordings are available in the balanced
subset of 944 recordings used in method 1. We selected
equal representations of normal and abnormal cases from
each of them in order to create two balanced subset. Fi-
nally, separate sets of features are selected for each cases,
for designing of the classifiers.

3.4. Method 4: Separate Models But Un-

balanced Long Recordings

This is a logical extension of method 3. Similar to
method 2, here we explore all possible PCG features on
the entire unbalanced dataset. However, we found that,
this only improves the performance of the long record-
ing. The performance on short recordings actually gets
degraded. Thus in this method, we modify the analysis
on long recordings only, by utilizing the entire feature list.
The model for the short recordings remains the same as
used in the previous method.

Table 1. Performance Comparison between Proposed

Methodologies
Se Sp M Acc

Method || mean | std mean | std mean | std
1 0.78 0.036 || 0.79 0.058 || 0.78 0.034
2 0.60 0.039 || 0.97 0.006 || 0.78 0.020
3 0.79 0.044 || 0.78 0.045 || 0.78 0.036
4 0.95 0.092 || 0.72 0.034 || 0.84 0.148
5 0.80 0.042 || 0.90 0.015 || 0.85 0.025
3.5. Method 5: Three class classifier for

Noisy Data

A significant portion of the entire dataset is largely cor-
rupted due to human speech, background noise and the
frictional noise generated due to the motion of the stetho-
scope on human body. In all our previous methods, all
recordings were categorized into one of normal and abnor-
mal classes regardless their signal quality. Ground truth
signal quality for each signal was also provided along the
training set in a binary form. This shows that 279 out of
a total 3153 recordings are very poor for analysis even by
expert annotators. Thus we created a three class classi-
fier which provides a scope of identifying the noisy data
and mark them as unsure along with classifying the rest as
normal or abnormal. Six more features were derived for
the noisy signals and are combined with the previous 88
features. the new features are - standard deviation of ra-
tio between 1) diastolic and S1 power, 2) diastolic and S2
power, 3) mean of ratio between S1 and S2 power, median
of ratio between 4) diastolic and S1 power, 5) diastolic and
S2 power and 6) Kurtosis of the envelop of the autocorre-
lated PCG signal. All 94 features are applied on the entire
dataset of 3153 recordings for performance evaluation.

4. Experimental Results

The popular ensemble learning method Random Forest
(RF) is used for creating the learning models and clas-
sification. The number of decision trees in the forest is
optimized during training. All our results in this paper
are reported using 5-fold cross validation technique. The
performance is evaluated in terms of three metrics de-
tailed in [4], 1) Sensitivity(Se) 2) Speci ficity(Sp) and
M Ace = (Se + Sp)/2. All unsure predictions, obtained
in method 5 are marked as correct in the scoring system, if
the ground truth signal quality is poor and incorrect other-
wise.

Table 1 shows a comparative analysis among all the five
methodologies explored in this paper. For all the cases, the
performance metrics are reported in terms of mean + std
values obtained across all folds of the 5-fold cross vali-




dation technique. It can be concluded that overall perfor-
mance (M Acc) of the first three methodologies is quite
similar. However, due to training on a balanced dataset,
method 1 and 3 generate more unbiased classifiers, result-
ing in sensitivity and specificity scores close to each other.
Method 4 shows a significant improvement in mean M Acc
over the first three methods owing to very high sensitivity.
However, the overall classification score is still fairly un-
stable as evident in high standard deviation values across
all matrices.

A high value of sensitivity and specificity can simultane-
ously be achieved in method 5. In spite of being trained on
an unbalanced dataset, addition of new features for identi-
fying the noisy recordings is found to improve the accuracy
significantly over the other methods. A possible reason
may be, treating the noisy recordings as a separate class,
reduces the anomaly in both normal and abnormal classes,
thereby improving the overall training.

In our application, sensitivity measures the fraction of ab-
normal heart sounds out of all the test cases, getting cor-
rectly detected by the classifier. Specificity on the other
hand, measures the fraction of normal heart sounds that
are being correctly identified. Since, we are dealing with
a screening system, a high value of sensitivity is always
required to ensure that most of the abnormal heart sound
gets detected by the system. Thus, in spite of a lesser ac-
curacy compared to method 5, method 4 is the expected to
come out to be a suitable method for developing a screen-
ing system due to yielding a mean sensitivity score of 0.9.
However, if both sensitivity ans specificity are equally im-
portant, method 5 comes out to be the most optimum ap-
proach.

5. Conclusion

This paper deals with classification of normal and abnor-
mal heart sounds using machine learning approach. Sev-
eral time and frequency domain PCG features have been
explored in this context. Five different methods have been
investigated for performance comparison. The dataset pro-
vided in Physionet Challenge 2016 has been used for per-
formance evaluation via 5-fold cross validation approach.
Results show that separate training models, for long and
short recordings can improve the sensitivity of the system.
Results also show that, the overall accuracy can also be
improved by incorporation a three class classifier to iden-
tify the noisy data. In this paper, we have used state of the
art techniques for noise cleaning and segregation of funda-
mental heart sounds from raw PCG. Our future work in-
cludes, improving those state of the art techniques in order
to perform better even on noisy signals. We are also plan-
ning to enhance the existing feature list and comparing the
outcome of the proposed classifiers used in this paper with
other popular learning techniques for further improvement.
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