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Abstract 

Automatic classification of heart sound recordings is 
one of the widely known challenges for over 50 years. The 
fundamental objective of this study is to evaluate a large 
database of heart sounds collected from a variety of 
clinical and non-clinical surroundings and classify them 
into normal and abnormal categories. 

Daubechis-2 wavelet transform was applied to each 
phonocardiogram (PCG) recording after segmenting 
each cardiac cycle into four windows containing first 
heart sound S1-Systole-Second heart sound (S2)-Diastole 
states of a heart cycle. Morphological, statistical and 
time features were extracted from each cardiac states 
window. Heart sound classification into normal and 
abnormal was based on the SVM with Gaussian kernel 
function. The algorithm was trained by the recordings 
from all available training data sets (training set A to F). 
The performance of the proposed prototype was 
evaluated by five-fold cross-validation on the available 
training dataset as well as on the hidden test set by 
PhysioNet. Overall classification accuracies of 82% 
during Phase I submissions and 77% during Phase II 
submissions were achieved of the challenge. The final 
score on the blind test set was 74.65%. Based on the 
current result, the proposed prototype could be a 
potential solution for a robust and automatic 
classification technique of normal and abnormal heart 
sound recordings. 

1. Introduction

Cardiovascular diseases are one of the leading cause of 
death worldwide. According to World Health 
Organization’s 2015 report, nearly 17.5 million people 
died from different types of cardiovascular disease in 
2012, which represents 31% of global deaths [1]. Physical 
examination is one of the first steps to assess the 
cardiovascular system in clinical practice. An essential 
part of this physical examination is the heart auscultation, 
i.e., the act of listening sounds produced by the heart,

lungs and blood using a stethoscope to provide 
information about the valve functioning, rate and rhythm, 
and anatomical defects of the heart. Auscultation has 
become official diagnostic method after the invention of 
the stethoscope in 1816 by Laennec [2]. Thus, by 
providing critical initial clues in disease assessment, heart 
sounds serve as a guide for further diagnostic 
examination and thus play a vital role in the early 
detection of cardiovascular diseases. 

A cardiac cycle is composed of atrial and ventricular 
contractions produced by the electrical activity generated 
by the heart. Due to these contractions, the blood flows 
through different parts of the heart and around the body. 
The heart valves opening and closure are related with 
accelerations and decelerations of blood, which 
eventually give rise to vibrations of the whole cardiac 
structure (the heart sounds and murmurs) [3]. These 
vibrations are audible to the chest wall and carry critical 
information pertaining to the health of the heart. These 
heart sounds are graphically represented by a signal called 
phonocardiogram (PCG).  

Normally a PCG signal has two major audible sounds 
(first (S1) and second (S2) heart sounds) which are called 
fundamental heart sounds. Some other uncommon audible 
sounds include the third heart sound (S3), the fourth heart 
sound (S4), systolic ejection click (EC), mid-systolic 
click (MC), and diastolic sound or opening snap (OS), 
heart murmurs may occasionally appear due to ageing, 
disease or mechanical activity of heart such as high-
velocity flow of blood [5]. 

For automatic analysis of heart sound, the first step is 
to accurately segment the first and the second heart sound 
for localizing the systolic and diastolic region, so that the 
pathological situation of this regions can be reliably 
classified. Analysis of PCG signals, especially the 
automatic segmentation, and classification has been 
widely studied for past few decades. Tamer et al. 
proposed a wavelet-based segmentation and artificial 
neural network based classification [6]. Guy et al. 
proposed a clustering based approach in [7] while Chrysa 
et al. used a segmentation and feature extraction approach 
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using ensemble empirical mode decomposition and 
kurtosis features [8]. Wang et al. and Saracoglu et al. 
employed Hidden Markov models (HMM) for PCG 
recordings classification [9, 10]. Despite the availability 
of literature, there is still paucity on the sensitivity of the 
study due to lack of a standardized and high-quality 
database of heart sound recordings. As a result, the 
current study intends to develop a robust heart sound 
classification algorithm from the large public database 
provided by PhysioNet [11]. Overall, 3,240 heart sound 
recordings, collected from different locations of the body 
from both healthy and unhealthy subjects were provided 
by PhysioNet, as a training dataset for 2016 Challenge. 
Individual cardiac cycles were extracted from all 
recordings by using Hidden Semi-Markov Model 
(HSMM)-based segmentation model.  Finally an SVM-
based classification methodology was developed by 
extracting morphological, time and statistical features 
from segmented heart sounds of wavelet decomposed 
signal. 
2. Materials and architecture

2.1. Database 

The database used in our study was an extensive 
collection of heart sound recordings obtained from 
different real-world clinical and non-clinical 
environments, recorded from both healthy and 
pathological subjects, and was provided by 
Physionet/CinC Challenge 2016. The details of the 
database and data collection environment are provided in 
[12]. 

The whole dataset was divided into two parts:  training 
and testing sets. The training set was made available for 
the challenge participants while test set was kept hidden 
for scoring purpose. The training set consisted of six 
databases (A through F) containing a total of 3,240 heart 
sound recordings, durable from 5 seconds to  120 
seconds. All recordings were resampled at 2000 Hz [11]. 
The recordings were collected from different locations on 
the body. In both training and test sets, heart sound 
recordings were divided into two types: normal and 
abnormal heart sound recordings.  

2.2. System architecture 

The proposed prototype for automatically classifying a 
PCG signal into a normal or abnormal was developed 
through five stages: of cardiac cycle segmentation, 
wavelet decomposition, further segmentation into four 
windows (S1-Systole-S2-Diastole), morphological, time 
and statistical features collection from each window and 
finally the classification stage to categorize the PCG 
signal as normal or abnormal heart sound. A detail 
description of each stage is as follows.  

3. Methodology

3.1. Cardiac cycle segmentation 

The first step of automatic heart sounds classification 
prototype was to segment a PCG signal to localize S1, 
Systole, S2 and diastole stages of each cardiac cycle. For 
a segmentation purpose, we have followed the HSMM 
based algorithm developed by Springer et al. [13].  As 
shown in Figure 1, the fundamental states of a cardiac 
cycle S1, Systole, S2 and diastole are clearly 
distinguishable for a normal heart sound whereas the 
abnormal heart sound shows no clear visibility for these 
cardiac states. 

3.2. Wavelet decomposition 

Application of Fourier transform is limited to 
stationary signals, since PCG signals are non-stationary in 
nature; we have applied discrete wavelet transform in this 
stage for sub-band analysis. Wavelet coefficients 
(approximate and detail) were determined using 
Daubechies -2 wavelets for each cardiac cycle [14]. For 
each cardiac cycle, only the detail coefficients at a second 
decomposition level were used for further processing; this 
was based on the prior finding in the literature [6] that the 
detail coefficients at second decomposition level have the 

Figure. 1.  Segmented cardiac cycle from PCG signal. (a) shows the 
cardiac cycle segmented from a normal PCG signal showing heart 
sound S1-Systole-S2-Diastole, while (b) shows the cardiac cycle 
segmented from an abnormal PCG signal. 

 

 

  



distinguished features, which facilitate differentiating 
normal and abnormal PCG signals. 

3.3. Segmentation into four window 

In this stage, the signals generated from the detail 
coefficients of each cardiac cycle were further segmented 
into four windows such that the window 1 contains the 
first heart sound S1, window 2 contains the systole stage, 
window 3 contains the second heart sound and window 4 
contains the diastole part of a single cardiac cycle. This 
segmentation process was performed to extract 
meaningful features from each stage of a cardiac cycle 
which can accurately differentiate normal and abnormal 
PCG signals. Figure 2 shows the four distinct events of a 
cardiac cycle, namely, S1, systole, S2, and diastole. 

3.4 Feature collection 

The fourth stage was feature collection from each 
segmented window of a PCG signal. The following 
features were collected from each signal. 

1) Morphological Features: Morphological features
extracted from each window were the mean and the 
standard deviation of a power spectral density of each 

window (2 features per event, total of 8 features), the 
average dominant frequency of each window (4 features) 
and, the mean and the standard deviation of linear 
prediction filter coefficients of each window (8 Features). 
Thus, a total of 20 morphological features were extracted 
from a PCG signal. 

2) Statistical Features: 16 statistical features were
extracted by calculating the mean and standard deviation 
of skewness (8 features) and kurtosis (8 features) from 
each window of a cardiac cycle. 

3) Time Features: Total 6 time features extracted from
each PCG signals, these were the length of S1, systole, S2 
and diastole in second (4 features), and ratio of their 
interval (2 features). 

So a total 42 features were extracted from each PCG 
signal and a feature matrix were generated for the 
classification purpose in the next step. 

3.5. Classification 

The final stage of the proposed system was to classify 
the PCG signals into normal and abnormal signals based 
on the features collected in the previous section. We have 
used SVM classifier, which is the state-of-art machine 
learning classification method. The performance of SVM 
classification was tested for five different kernel 
functions, i.e., linear, the polynomial of order one, two, 
and three and the Gaussian.  Finally, the Gaussian kernel 
was selected based on its superior performance in 
comparison to other kernels.  

4. Results

The performance of the proposed prototype was 
evaluated in two different ways. The first way was to 
calculate the performance measures (accuracy, sensitivity, 
and specificity) by cross validation method on the six 
different training datasets available for the challenge 
participants. The accuracy was calculated using 5 fold 
cross validation. Table 1 shows the cross-validation 
results for sensitivity, specificity and accuracy of all 
available training sets.  

Another way of evaluating the performance of the 
proposed algorithm was to submit the Phase I and Phase 
II entry for PhysioNet/CinC Challenge 2016, where, the 
entry was assessed and scored using a hidden test set, 

Table 1. Five Fold Cross Validation Results on Training Data Set A to F  
Dataset # Patients # recordings # Abnormal # Normal     # Unsure Sensitivity Specificity Accuracy 
Training Set A 121 409 276 116 17 0.83 0.38 0.61 
Training Set B 106 490 73 295 122 0.36 0.88 0.62 
Training Set C 31 31 20 7 4 1.00 0.86 0.93 
Training Set D 38 55 26 26 3 0.71 0.70 0.71 
Training Set E 356 2054 146 1781 127 0.66 0.99 0.83 
Training Set F 112 114 31 78 5 0.38 0.89 0.64 

Figure 2. Four segmented window from a cardiac cycle. 
Window 1 contains the first heart sound S1, window 2 contains 
the Systole, window 3 contains the second heart sound and 
window 4 contains the diastole. 

 

 

  



Phase I entry was evaluated on 20% of whole test data. 
The phase II entry was evaluated on a larger portion of 
the balanced subset from the hidden test set. The final 
score was based on the whole blind test set.  Table 2 
shows the phase I, phase II and final entry results for the 
proposed prototype. 

5. Discussion

The results shown in Table 1 and 2 indicate that our 
proposed classification prototype performed better for the 
training set C and E with cross validation than the hidden 
test set on phase I and phase II entry. The accuracy 
actually mostly depended on the condition of the dataset 
if it is balanced or unbalanced. The specificity actually 
reduced during phase I entry, which potentially could be 
due to an unequal number of normal and abnormal data 
on the randomly chosen test data during Phase I entry. 
During official entry, the balanced entry resulted in 
higher accuracy than the unbalanced entry.   

Table 2. Entry results on Test Set 
Entry Sensitivity Specificity Accuracy 
Phase I 0.76 0.88 0.82 
Phase II 0.70 0.83 0.77 

Final Score 0.644 0.849 0.746 

The best accuracy reported using this database was 
86% where Potes et al. proposed an Adaboost classifier to 
distinguish time-frequency based features along with 
CNN learner based feature collected from segmented 
heart sounds [15]. Our overall cross-validation accuracy 
on the whole training set was 81.8% and on hidden test 
set was 74.6%. Their hybrid features aggregation method 
combining the hand crafted and automatic CNN learner 
based features proved to distinguish the abnormal heart 
sound efficiently. The wavelet based features collected 
from each cardiac states in our study is also promising to 
classify the normal and abnormal heart sound, but further 
improvement is required to increase the algorithms 
performance.  

6. Conclusion

In present study we have explored  (i) a methodology 
for segmenting wavelet decomposed signal in order to 
extract features from vital cardiac events, namely, S1, 
systole, S2, and diastole stages of each PCG cardiac 
cycle, (ii)  a set of robust and meaningful features by 
combining morphological, statistical and time features 
which has potential to accurately classify heart sounds 
obtained under practical conditions, and (iii) a reliability 
of SVM-based classifier with Gaussian kernel function 
was validated which performed better than other 
classifiers  both on the training dataset and hidden test set 
to classify the normal and abnormal PCG signals.  

The future steps for this study could be explorations 
into the extraction of new and novel features to further 
increase the accuracy and to apply a feature selection 
methodology like divergence analysis in order to select 
best features, which will eventually improve the accuracy. 
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