






4. Results

Using a moderately sized neural network and a train-
ing/validation split of 85%/15%, we can report a result
of 0.89 using the non-revised challenge scoring (0.90 on
training data). A detailed listing per dataset is shown in
table 3. The highest submitted phase two entry has a non-
revised score of 0.77 and a revised score of 0.827.

Concerning the challenge sandbox our submitted entry
uses less than 20% of the available computation quota.

Table 3. Classification results for the challenge datasets
A-F, without training/validation split.

Dataset # Recordings Sensitivity Specificity Score
A 409 0.99 0.11 0.55
B 490 0.79 0.53 0.66
C 31 1.00 0.00 0.50
D 55 1.00 0.07 0.53
E 2054 1.00 0.98 0.99
F 114 1.00 0.02 0.51

Total 3153 0.96 0.83 0.89

5. Discussion

We present a deep neural network as solution to the 2016
PhysioNet/CinC Challenge. The network is strictly regu-
larised and small in terms of weights (21, 924) compared to
commonly used deep architectures. This reflects the lim-
ited number of only 3153 training samples, although the
number of actual training patterns has been artificially in-
creased by a factor of 17 by augmentation.

Applying a 85%/15% training/validation split, we
achieve scores between 0.89 and 0.90 with a difference of
typically about 0.01 between training and validation data.
At first glance this results indicate a good generalisation of
the classifier. However, performance on the subsets of the
dataset differs dramatically (from 0.99 for subset E to 0.51
for F, see table 3). It seems that during training the network
mainly adapts to dataset E that in fact comprises the major-
ity of the PCGs. The final score of only 0.83 on the hidden
challenge dataset is consistent with this findings. Interest-
ingly, the revised scoring resulted in an increased score and
a reduced difference between performance on training data
and hidden data.

For the final classification step, the feed forward atten-
tion mechanism turned out to be superior to naı̈vely using
the output of the last interval of the recurrent layer.

We have to conclude that, in contrast to the apparently
good generalisation, prediction of unseen data is still a
challenging task for the neural network. Additional work
is necessary to further improve its predictive power.

A bigger neural network with more adjustable weights
might be necessary to represent all different types of PCGs
in the highly diverse training and validation data. However,
training of such a bigger neural network would require ad-
ditional methods for augmentation or at best, (much) more
example PCGs for training.
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