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Abstract 

CPR monitors provide feedback on rate, depth and 
release force (RF) of chest compressions. Excessive RF 
(“leaning”) impedes venous return, reducing blood flow. 
Available monitors detect leaning with a force sensor, an 
expensive component. Our objective was to determine 
whether leaning, like rate and depth, could be detected 
through the accelerometry signal alone. 

Brief intervals of accelerometry signals centered on 
force minima were extracted from chest compressions 
recorded with CPR monitors used in 289 out-of-hospital 
cardiac arrest in the Portland metropolitan region from 
2009 – 2015. Evidence for effects of leaning was sought 
with various neural networks. Testing was done with 
waveforms extracted from 147 additional cases. 

A cascadeforward network with 2 hidden layers 
outperformed simpler alternatives. 

Testing yielded 88.6% correct classifications. Cases 
with zero RF were identified correctly as non-leaning in 
99.9% of 123714 cases. 

Accelerometry in the vicinity of the release point 
provides information about the force at release and 
warrants further investigation. 

1. Introduction

Cardiopulmonary resuscitation (CPR) contributes to 
survival from cardiac arrest, especially when initiated 
early, including by non-professional volunteer responders 
with limited training[1,2]. Key characteristics of high-
quality CPR include a rate between 100 to 120 cpm, 
depth of 2-2.4 inches and complete chest wall recoil[3]. 
CPR monitors provide feedback on rate, depth and release 
force (RF) of chest compressions. Excessive RF 
(“leaning”) is common in practice and impedes chest wall 
recoil, venous return, and blood flow[4]. Leaning can be 
reduced with real-time feedback [5,6]. Available monitors 
that detect leaning include a force sensor, a relatively 
expensive component, for that purpose. Since rate and 
depth feedback can be provided using only an 
accelerometer, our objective was to determine whether 
leaning could also be detected from the accelerometry 
signal.  

Development of a less expensive CPR feedback 

monitor that included leaning correction might help 
improve the quality of CPR with more widely available 
monitors that lack force sensors. 

A relationship between accelerometry and leaning if 
any is unknown. We sought evidence for one using neural 
networks configured for pattern recognition. Theoretically, 
sufficiently large neural networks can be trained to 
recognize any existing pattern[7]. Excessively complex 
networks may be overtrained to a particular data set, and 
not generalize well. We surveyed a range of neural 
network architectures (“nnets”) using data from CPR 
monitors used in out-of-hospital cardiac arrest treatment. 
These monitors included force sensors, which directly 
measure leaning, as well as accelerometers. 

2. Methods

Brief intervals (0.32 s) of accelerometry signals 
centered on force minima (i.e. the point of release) were 
extracted from a training database of 487,077 
compressions from a randomly selected subset (n=289) of 
recordings from Philips MRx defibrillators equipped with 
CPR monitors used out-of-hospital in the Portland 
metropolitan region from 2009 – 2015.  Accelerometry, 
recorded at 250 sps or 100 sps, was resampled as needed 
to 100 sps for uniformity. Leaning was defined as present 
(release force >= 2.5 kg)5, absent (< 1 kg) or intermediate. 
Cases with evident recording anomalies were removed, 
leaving 486,789 compressions in the Training database.  

We sought a classifier distinguishing leaning from 
non-leaning as a pattern recognition problem using the 
Matlab® Neural Networks Toolbox. Intermediate 
compressions were excluded during training. Testing was 
done with 251,117 additional waveforms extracted from 
147 additional cases.  

Two types of neural network architectures (“nnets”) 
were examined: feedforward (FF) (each layer informed 
by only the immediately prior layer), and cascadeforward 
(CF), (each layer informed by all prior layers). 

We surveyed performance of a range of FF nnets with 
up to 4 hidden layers, covering a binary exponential 
sequence of numbers of nodes in the 1st layer (2, 4, 8, 
16, …, 512), and successively adding layers to the best-
performing instances of each previous design and its 
simpler neighbors (145 nnets).  
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Figure 1. Feedforward (above) and cascadeforward 
(below) topologies with 32 1st and 4 2nd hidden layer 
nodes ([32 4]). 

Interim results showed that fan-in architectures 
outperformed same-sized fan-out architectures and that 
flat architectures (same number of nodes in 1st and 2nd 
hidden layers) offered little if any advantage, so only fan-
in networks were explored further. We explored fan-in 
CF networks with 2 hidden layers and 1st layers of up to 
32 nodes (11 nnets). FF networks were implemented with 
the Matlab function “patternnet” trained with resilient 
backpropagation (“rp”), as recommended for patternnet. 
CF networks were implemented with the Matlab function 
cascadeforwardnet trained with Bayesian regularization 
backpropagation (“Brp”), as recommended for 
cascadeforwardnet. Selected FF nnets were also trained 
with Brp to examine the relative impacts of network 
structure and training method. Each nnet was trained 5 
times independently. During each training session, all 
coefficients were re-initialized, 70% of the training cases 
were randomly assigned for learning, 15% for progress 
assessment and 15% for measurement of accuracy. 
Training proceeded until progress in performance stopped 
or 1000 epochs passed. Networks were evaluated on the 
basis of their median accuracy (% correct classifications) 
and the stability of their accuracy over training sessions. 
Nnets with a range of accuracies over the 5 sessions of > 
1% were discarded as prone to overtraining (not 
generalizable). The most accurate examined CF network, 
having 32 nodes in the 1st hidden layer, 16 in the 2nd 
hidden layer ([32 16]) was assessed in more detail with 
the test database of 147 cases. 

3. Results

Leaning is relatively uncommon (12%) in the training 
dataset, reflecting high quality of responder training and 
realtime feedback. Avoidance of leaning is common 
(88%). Most (61%) compressions had RF < 1 kg.  

Figure 2. Observed release forces, Training database 

The proportions of these types was essentially the same in 
the Test database. The difference between accelerometry  
signals with and without leaning is subtle and undescribed. 
No signal features are known or readily apparent, 
warranting use of pattern recognition analysis. 

Figure 3. Accelerometry signals without (above), with 
leaning (below). 1 g removed for gravity. 

 

 

  



With the FF nnets trained with rp, within each group (1, 
2, 3 or 4 hidden layers) median accuracy increased with 
network size up to a point, after which susceptibility to 
overtraining was evident. The optimal FF nnet was 64 
nodes in a single hidden layer (86.8% accuracy), a 
performance matched but not exceeded by some multiple 
hidden layer designs ([32 16 4], [32 16 8]).  

Only the smallest ([4 2]) CF networks showed 
susceptibility to overtraining. All generalizable CF nnets 
outperformed all generalizable FF nnets trained with rp. 
Selected FF nnets trained with Brp matched the 
performance of similarly structured CF nnets, suggesting 
that it is the regularization method during training more 
that the internal structure that most affects performance. 
CF performance increased steadily with size, reaching 
88.6% with the largest examined design ([32 16]). The 
[32 16] CF network with median performance used for 
further analysis. 

The output layer of a neural network produces a 
continuous value transformed to lie between 0 and 1. 
Conventionally, values >= 0.5 are regarded as identified 
by the neural network, those < 0.5 as rejected. 

On this basis, and using the conventional limit of 2.5 
kg for leaning, with the test database this network yielded 
overall sensitivity = 51%, specificity = 91%. 

The correct interpretation of intermediate forces is 
unclear, and it may be useful to define leaning as neural 
net output >= 0.75, no leaning as neural net output < 0.25, 
and the remainder as indeterminate. 

With this approach, only 0.6% of non-leaning cases are 
classified as leaning, though only 26.1% of leaning cases 
are classified as leaning. In fact, the neural net output is a 
continuous variable, and it tracks residual force generally 
smoothly: 

Figure 4. Leaning classification over the range of RF 

Only 0.7% of the most common class, residual force 
between 0 and 0.5 kg, are misclassified as leaning. 

Specificity for the 25% of Test cases with RF = 0 was 
99.9%. 

3. Discussion

For adult patients, leaning is conventionally defined as > 
2.5 kg of residual force[4], but the impact of sternal force 
on hemodynamics is continuous, no safe limit has been 
documented, and optimal treatment of intermediate levels 
of residual force is unclear. 

A CPR coaching application might seek to constrain 
negative feedback to the user about leaning to the 
minimum consistent with providing useful guidance, and 
to avoid misclassification of non-leaning compressions to 
reduce confusion and maintain user confidence. Serial 
analysis with hysteresis unaffected by indeterminate 
measures could possibly support effective coaching with 
moderate latency. At a nominal compression rate of 100 
cpm 10 compressions are available in 6 s. 
The present analysis does not identify the optimal 
classifier for underlying such an application, but it does 
demonstrate that the accelerometry signal in the vicinity 
of the release point provides considerable information 
about the force at release. Further studies exploring 
alternative measures and classification algorithms based 
on this signal are warranted.  
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