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Abstract

There are many sources of uncertainty in the recording
and modelling of membrane action potentials (APs) from
cardiomyocytes. For example, there are measurement, pa-
rameter, and model uncertainties. There is also extrinsic
variability between cells, and intrinsic beat-to-beat vari-
ability within a single cell. These combined uncertainties
and variability make it very difficult to extrapolate predic-
tions from these models, since current AP models have sin-
gle parameter values and thus produce a single AP trace.
We aim to re-parameterise existing AP models to fit exper-
imental data, and to quantify uncertainty associated with
ion current densities when measuring and modelling these
APs. We then wish to propagate this uncertainty into model
predictions, such as ion channel block effected by a phar-
maceutical compound.

We perform an in silico study using synthetic data gen-
erated from different sets of parameters. We then ‘forget’
these parameter values and re-infer their distributions us-
ing hierarchical Markov chain Monte Carlo methods. We
find that we can successfully infer the ‘correct’ distribu-
tions for most ion current densities for each AP trace,
along with an approximation to the higher-level distri-
bution from which these parameter values were sampled.
There is, however, some level of unidentifiability amongst
some of the current densities.

1. Introduction

Mathematical models of single-cell electrophysiology
are used in cardiac safety to predict effects of pharmaceu-
tical compounds that block multiple ion channels. Data
from screening with mathematical models of cardiac ac-
tion potentials can help us to understand what combined
effect a drug will have on overall cellular electrophysi-
ology [1]. Moreover, a single cell expresses beat-to-beat
variability when measuring action potentials (APs), which

adds another layer of variability onto making predictions.

In particular, stem cell-derived cardiomyocytes [2] have
been proposed for use in pharmaceutical safety testing, but
different batches of these cells show different ion channel
expression, which will lead to different responses to com-
pounds. The first mathematical model of these cells was
developed by Paci et al. [3]. Tailoring models to individ-
ual cells or batches of cells should allow greater predictive
power when considering compound effects on ion chan-
nels. Treating model parameters as random variables and
using a hierarchical Bayesian approach to infer probabil-
ity distributions instead of single best-fit point-estimates,
the uncertainties associated with beat-to-beat variability,
model fitting, and model predictions can be quantified
and propagated to obtain ranges of possible predicted out-
comes.

A general equation for an AP model is

Cm
dV

dt
= −

(∑
i

GiOi(V − Ei) + Istim

)
, (1)

where V is the membrane voltage, Cm is the membrane
capacitance, the Gi are the maximal ion current conduc-
tances, the Oi are the open probabilities for the ion chan-
nels, theEi are the ionic reversal potentials, and Istim is an
externally applied stimulus current. i indexes the various
ion currents that are included in the model.

These ion channels are generally the targets or off-
targets of drugs that are of concern in terms of cardiac
safety. We therefore treat the Gi as the parameters of in-
terest. We can model drug effects by scaling the Gi, since
decreasing a Gi represents a blocking of that ion channel,
so that less of that ion current is flowing across the cell
membrane.
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2. Methods

2.1. Statistical model

We work in a Bayesian framework, where we treat the
parameters of interest as random variables. Then, given
some data, we infer probability distributions, called the
posterior distribution for these parameters. We are effec-
tively finding all sets of parameter values which allow us
to fit our model to the data, while assigning these sets dif-
ferent probability densities describing how good a fit they
provide.

Suppose that the voltage trace produced by a model
given by Equation (1) is y = f(G), where G is a vec-
tor of maximal current densities parameters, and y is the
computed voltage trace. We model one dataset as being
an observation of the true system behaviour, described by
f(G), plus some Normal random noise with standard de-
viation σ.

However, we wish to capture inter-experiment or beat-
to-beat variability. We therefore treat each each dataset as
a realisation of the underlying model, but solved with dif-
ferent sets of parameter values, Gi, where i = 1, . . . , Ne

and Ne is the number of datasets, or experiments. We use
a hierarchical statistical model to describe these sets of pa-
rameters as being related to each other through some over-
arching Normal distribution with mean Ĝ and independent
standard deviations σ̂.

We therefore have

yi ∼ N
(
f(Gi), σ

2
)
, (2)

Gi ∼ N
(
Ĝ, σ̂2

)
, (3)

for i = 1, . . . , Ne. A schematic of this hierarchical model
is given in Figure 1.

Ĝ σ̂ σ

Gi

yi

1 ≤ i ≤ Ne

1 ≤ i ≤ Ne

Figure 1. All circled variables are parameters for which
we wish to infer probability distributions.

To quantify the observational uncertainty and inter-
experiment variability, we want to infer probability distri-
butions for allGi, Ĝ, σ̂, and σ. Given these distributions,
we can construct posterior predictive distributions for Gi
which will allow us to make predictions for how a cell will
behave in a future experiment.

2.2. Synthetic data

We use synthetic data as a way to eliminate ‘model un-
certainty’. That is, we work in a framework in which we
have a ‘perfect’, or ‘correct’, model. This is a best-case
scenario which we will never have when using real exper-
imental data, but it provides a starting-point from which to
develop our analysis.

We use synthetic data generated from the Paci et al.
model from the CellML repository [4], which has 12 ion
currents. We attempt to infer distributions for the maxi-
mal densities for all 12 of these currents. We define the
‘top-level’ distribution, i.e. the distribution from which the
Gi will be drawn, as a Normal distribution whose mean
is the published set of maximal conductance values, and
standard deviations of 0.1× those values. The synthetic
data is generated by solving the model equations in Chaste
[5], given a set of maximal conductance parameter values
drawn from the pre-defined distribution, and then adding
random observation noise to every data point. This noise
was Normally distributed with standard deviation 0.25 mV.
This value was chosen by computing the standard devia-
tion of a relatively flat region of a real experimental volt-
age trace from a canine cardiomyocyte, as in [6]. These
synthetic datasets are plotted for Ne = 5 and Ne = 10 in
Figure 2.

2.3. Parameter inference

The posterior distribution, p(θ|data), is defined using
Bayes’ Theorem:

p(θ|data) = p(data|θ)p(θ)∫
θ
p(data|θ)p(θ)dθ

, (4)

where p(data|θ) is the likelihood of the observed data
given parameters θ and p(θ) is the prior distribution of
the parameters. The prior distribution contains our prior
knowledge or belief about the parameters before observ-
ing any data.

The integral in the denominator of Equation (4) is gen-
erally intractable, so we use Markov chain Monte Carlo
(MCMC) methods [7] to approximate p(θ|data). MCMC
methods only require that we know the posterior distribu-
tion up to a factor of a constant, so it is enough to have
that

p(θ|data) ∝ p(data|θ)p(θ) (5)
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Figure 2. Synthetic voltage traces generated for Ne = 5
(top) and Ne = 10 (bottom).

to allow us to construct an approximation to the posterior
distribution.

We ‘forget’ the parameter values used to generate the
synthetic data and use an adaptive Metropolis-within-
Gibbs [8] MCMC method to infer distributions for all Gi,
Ĝ, σ̂, and σ. Suppose there are d parameters in the mathe-
matical model, i.e. G = (G1, G2, . . . , Gd), then there are
a total of (Ne+2)d+1 parameters in the statistical model.
We attempt to infer distributions for all (Ne + 2)d + 1
parameters using MCMC. In this example, the Paci et al.
model has 12 ion currents, so d = 12 here. We first have
to specify prior distributions over the ‘top-level’ parame-
ters, Ĝ, σ̂, and σ. We choose a uniform prior for σ which
is wide enough to capture any plausible values of the ob-
servational noise standard deviation. We use a Normal-
inverse-gamma distribution as the prior distribution over
Ĝ and σ̂, which allows us to use conjugate prior [7] prop-
erties to speed up the MCMC sampling.

The aim is to identify how much information is present
about the parameters in each individual trace as well as
how they are related across experiments. This should al-
low us to quantify inter-experiment variability and provide
ranges of predictions for future experiments along with as-
sociated probabilities.

3. Results

We use the mean absolute percentage error (MAPE) as
an estimator for a ‘successful’ inference of a parameter.
For the intra-experimental parameters Gi, we say that we
have successfully inferred a parameter when its MAPE
is less than 0.05, i.e. when, on average, the samples are
within 5% of the value used to generate that voltage trace.

We are able to infer tight distributions for some parame-
ters, but not for all of them. For example, in the case where
Ne = 5, we infer a relatively tight distribution for GNa

around the values used to generate the synthetic traces.
However, for other parameters, the inferred distributions
do not capture the original value. Figure 3 shows inferred
marginal distributions for GNa and GKr for a single AP
trace. In the bottom plot, the GKr distribution is to the
left of the ‘true’ value since the ‘true’ values for the other
4 traces are also to the left and so the information shared
across the hierarchical model places more probability mass
to the left of the red line.

This tells us that that particular voltage trace contains
much more information about GNa than about GKr. We
find that, of the 12 conductance parameters we wish to in-
fer per experiment, we can consistently recover 5 of them,
and can recover up to 10 for different experiments. This
suggests that we use a more complicated experimental pro-
tocol to generate a dataset with more information about
specific parameters.

We can construct the posterior predictive distributions
by summing the Normal distributions defined by our sam-
ples of Ĝ and σ̂ at every iteration in the MCMC and then
normalising. This approximates the over-arching distribu-
tion which governs how the Gi are distributed. To make
predictions of how a cell will behave in a future experi-
ment, we would sample values of G from this distribution
many times to construct a range of predicted AP traces.
The posterior predictive distributions for the cases where
Ne = 5 and Ne = 10 are plotted in Figure 4, along with
the ‘true’ distribution we are trying to approximate. In-
creasing the number of datasets being fit to increases the
overall information content, so we can better approximate
the true distribution.

4. Conclusions

Some of the ion current densities in AP models could
be tailored to the individual cells upon which the exper-
iments are performed. Using a Bayesian framework al-
lows us to quantify and propagate uncertainties introduced
through observational, residual, and input uncertainty [9].
In the case of multiple cells, or beat-to-beat variability, we
can treat each AP as a separate dataset and using hierar-
chical MCMC methods to fit the model to the data simul-
taneously, while sharing information among the traces. In-
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Figure 3. Normalised marginal histograms for GNa and
GKr inferred for a single AP trace when Ne = 5. The
vertical red lines are the ‘true’ parameter values used to
generate the synthetic data trace.
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Figure 4. The ‘true’ distribution governing theGi and the
posterior predictive distributions for the Gi in the cases
where Ne = 5 and Ne = 10. Increasing the number of
datasets fit to allows us to better approximate the true dis-
tribution.

creasing the number of datasets being fit to is important
for increasing accuracy of predictions, but does increase
computational cost.
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