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Abstract

The L-type calcium current (ICaL) is a key current of the
heart playing an important role in the contraction of the
cardiomyocyte. Patch-clamp recordings of ionic currents
can be associated with a reduction of the current magni-
tude with time (termed ‘rundown’), and this phenomenon
is particularly pronounced for ICaL recordings. Some part
of rundown can be attributed to the unique sensitivity of
L-type calcium channels (LCCs) to local [Ca2+]. In this
paper, we study the experimental conditions in which run-
down due to calcium-dependent inactivation (CDI) is min-
imised. We use first principles to derive an analytical equa-
tion for the diffusion of a calcium-chelating buffer from a
patch hole on the cell’s surface to the entirety of the cell.
This determines the concentration profile of the buffer with
respect to time and space. We then use the equation to sim-
ulate the effects of incoming calcium via the LCCs and its
chemical reaction with the buffer.

1. Introduction

Models of the L-type calcium current ICaL [1] can be
built by calibrating and validating them against current
recorded from patch-clamp experiments. A difficulty in
building ICaL models using information-rich protocols such
as those used previously for hERG [2, 3], lies in the inter-
pretation of the recorded current which is attenuated with
time (also called rundown). Rundown in ICaL is attributed
to several factors including inactivation of ICaL channels
(LCCs) by local [Ca2+] (calcium-dependent inactivation,
CDI), loss of phosphorylating agents (e.g. ATP) which fa-
cilitate the up-regulation of ICaL, and activation of [Ca2+]-
dependent enzymes that eventually can cause LCCs prote-
olytic degradation [4]. One way in which CDI-induced
rundown is known to be reduced in patch-clamp exper-
iments is by using [Ca2+]-chelating buffers (e.g. BAPTA,
EGTA) in the cell’s internal solution. Nevertheless, some

amount of rundown remains in such recordings.
In this study we model the experimental conditions at

which CDI-induced rundown is minimised by accounting
for the amount of calcium brought into the cell by ICaL, dif-
fusion of the [Ca2+]-chelating buffer ([B]), and the chem-
ical reaction of the [Ca2+] and [B] in a whole-cell patch-
clamp voltage-clamp experiment.

2. Methods and results

In this section we set up the geometrical problem of the
buffer and its entry into the cell; and subsequently use it
to derive an analytical solution of the diffusion of buffer
from the a punctured hole on the cell’s surface to the en-
tirety of the cell. Finally, we combine the effects of 1)
entry of [Ca2+] via LCCs into the cell, 2) chemical reac-
tion of [Ca2+] and [B], and 3) diffusion of the three chemi-
cal species [Ca2+], [B], and [CaB] as per the concentration
gradient reaction; in a numerical scheme according to the
finite volume method to simulate ICaL with time.

2.1. Shape and axis of symmetry of a cell

We consider the Chinese hamster ovarian (CHO) cell
utilised in an automated patch-clamp experimental system.
CHO cells are placed on a well above a hole on a plate, suc-
tion applied at this hole ruptures the membrane and keeps
the cell in place so that whole-cell patch clamp configu-
ration is achieved. This results in the ‘squashing’ of the
cell (Figure 1B) which is otherwise approximately spheri-
cal in shape (Figure 1A). Intracellular solution containing
the buffer (shown in blue) enters the cell from this punc-
tured patch hole.

This ‘squashed’ cell can be approximated as hemi-
spherical in shape and it is easy to see that there are two
axes of symmetry along which the buffer entering the cell
diffuses, one along the radius (r), and the other along the
axial direction (z) as shown in Figure 1C. The diffusion of
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Figure 1. CHO cell A) Freely suspended, B) Ruptured
and attached to the seal chip plate from which the intra-
cellular solution enters the cell, C) hemi-spherical model
of the patched cell and co-ordinate system, and D) hollow
hemi-spherical model of the patched cell and co-ordinate
system with the inner and outer radii.

the buffer in these cylindrical coordinates is given by the
equations below:

∂B
∂t

=
DB

r

∂

∂r

(
r
∂B
∂r

)
+DB

∂B
∂z

, (1)

B|z=0 = Bmax if r ≤ R0,

∂B
∂z

|z=0 = 0 if r > R0,

∂B
∂r

|r=0 = 0, and

B|t=0 =

{
Bmax r ≤ R0 & z = 0,

0 otherwise.

We check if, for the time duration of our experiment,
these 2-D equations can be simplified to a 1-D spherical
cell. We do this by discretising the equations using the
finite volume method [5] on a 2-d mesh of 100µm with
200 divisions in each direction.

Figure 2 shows the concentration gradient at 1 ms,
10 ms, and 100 ms from the start of the experiment. This
figure shows that at longer times the diffusion becomes
approximately radially symmetric. Therefore, we adopt a
spherical axis of symmetry as shown in Figure 1D where
we project the surface area of the planar hole in Figure 1C
onto a hemi-spherical volume of equivalent curved surface
area (radius = R0).

Table 1. Constant values used for simulations in this paper.

Quantity Variable Value
Patch hole radius (µm) R0 1/

√
2

fCa half-concentration (µM) KIC50 3× 10−4

BAPTA concentration (mM) Bmax 10
BAPTA diffusion (cm2/ms) DB 2× 10−9 [6]
Backward BAPTA rate (1/ms) koff 0.298 [7]
Forward BAPTA rate (1/mM/ms) kon 1700 [7]

Figure 2. Contour map showing the diffusion of the buffer
from the patch hole to the whole spherical cell. The maxi-
mum concentration of 10 mM is shown in black while con-
centration of 0 mM is shown in white. DB and R0 are
given in Table 1.

2.2. Diffusion of buffer into the cell

We first consider the buffer concentration profile before
the voltage-clamp is applied to the cell. Using the spherical
shape and symmetry approximation as defined in the previ-
ous section, the diffusion of the free buffer (B) in spherical
polar coordinates is given by:

∂B
∂t

=
DB

r2
∂

∂r

(
r2

∂B
∂r

)
,

B|r=Ro
= Bmax,

∂B
∂r

|r=R = 0, and

B|t=0 = 0.

(2)

Next, we non-dimensionalise this partial differential
equation (PDE) using x = r−R

Ro−R , τ = DBt
(R−Ro)2

, and

u(x, τ) = Br
BmaxRo

. These non-dimensionalised entities
are now substituted into the PDE and the boundary equa-
tions to obtain:

∂u

∂τ
=

∂2u

∂x2
,

u|x=1 = 1,[
∂u

∂x
− hu

hx− 1

]
x=0

= 0, and

u|τ=0 = 0;

(3)

where h = 1− Ro

R . The general solution of Equation (3)
is given by the trignometrical series [8]:

u(x, τ) = f(x) +

∞∑
n=1

[An sinλnx+Bn cosλnx]e
−λ2

nτ ,

(4)
where f(x) is a linear function determined by the dif-

fusion profile at infinite time. Assuming that the buffer
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will fully equilibrate to the entire cell in infinite time;
u(0,∞) = 1

1−h , and u(1,∞) = 1. Therefore, f(x) =
xh−1
h−1 . The variables An, Bn, and the eigenvalues λn can

be determined using the boundary and initial conditions of
Equation (3).

First applying the boundary condition at x = 0 to Equa-
tion (4), we get,

∞∑
n=1

(λnAn + hBn)e
−λ2

nτ = 0, (5)

which is only possible if

λnAn + hBn = 0 and (6)

Bn = −λnAn

h
. (7)

Next, applying the boundary condition at x = 1 to Equa-
tion (4), we get

∞∑
n=1

(An sinλn +Bn cosλn) = 0, (8)

which is only possible if

An sinλn +Bn cosλn = 0. (9)

Substituting equation (7) into this we obtain

tanλn =
λn

h
, (10)

which gives the solution to the eigenvalues of equa-
tion (4). Equation (10) does not have any analytical solu-
tion but has infinite numerical solutions and we consider
positive roots of this equation to be the particular solu-
tions of the PDE. Finally, applying the initial condition
u(x, 0) = 0 to Equation (4), we get:

−f(x) =

∞∑
n=1

AnFn(x), (11)

where Fn(x) = sinλnx − λn

h cosλnx. We then adopt
the orthogonality condition derived by Lü & Bülow [8] us-
ing Sturm-Liouville theory [9] to determine the relation-
ship:

An = −αn

βn
,

αn =
1

h− 1

[(
1

h
+

h

λ2
n

− 1

)
sinλn − h

λn
cosλn

]
,

βn =
1

2h2

[
λ2
n + h2 +

λ2
n − h2

2λn
sin 2λn − 2h sin2 λn

]
.

(12)

Bn can now be determined using equation (7) and equa-
tion (12) as:

Bn = −λnαn

hβn
. (13)

The resultant analytical solution of the diffusion of the
buffer is plotted for different τ in Figure 3, left.
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Figure 3. Left: Concentration profile of the buffer inside
a cell with hemi-spherical geometry computed at different
times (R = 50µm). Right: Time taken for near complete
equilibration (B ⩾ 0.99Bmax) at r = R for cells of dif-
ferent sizes. Both the subplots have been generated using
the analytical solution given by Equation (4) and the vari-
able values in Table 1.

2.3. Chemical reaction & simulation of ICaL

The analytical equation in the previous section is used
to determine the concentration profile of the buffer before
a voltage-clamp is applied. ICaL channels on the surface
of the CHO cell bring in [Ca2+] into the cell and it reacts
with [B] to form the complex [CaB]. The net change in
the species [Ca2+], [B], and [CaB] with time is given by
the following ordinary differential equation (ODE) repre-
sented by the variable [X]:

∂[X]

∂t
=

diffusion︷ ︸︸ ︷
DX

r2
∂

∂r

(
r2

∂[X]

∂r

)
±

chemical reaction︷ ︸︸ ︷
(kon · [Ca2+][B]− koff · [CaB]) . (14)

The diffusion term above was re-written as a differ-
ence in flux followed by discretisation of the equations by
adopting the finite volume method [5] and dividing the cell
into N hemi-spherical shells of equal width. The [Ca2+] in
the outermost shell affects the CDI of ICaL [10], modelled

by fCa = 1/(1 + [Ca2+
]

KIC50
).

These equations were then simulated using Myokit
1.33.0 [11] with CVODE 5.7.0 and the solver’s relative and
absolute tolerances were set to 10−7. Figure 4 shows the
simulated rundown using a voltage step protocol to 0 mV
interspersed with a holding potential duration (thold) of 10 s
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at −90 mV (inset). [Ca2+], fCa, and ICaL recorded at each
sweep are overlaid on top of each other showing the in-
crease in [Ca2+]-accumulation, causing decrease in ampli-
tude of both fCa and ICaL with time. Peak current at each
sweep is plotted in the rightmost plot against the sweep
number showing rundown.
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Figure 4. Simulated A: local [Ca2+] near the membrane
with the step protocol inset, B: CDI gate (fCa), and C: ICaL
during the step up of Vm to 0 mV for successive sweeps
with indigo and yellow corresponding to the first and last
sweep respectively. D: peak-ICaL at each sweep. Here
t0 = 180 s and R = 30µm.

3. Discussion and conclusion

In the previous section we picked arbitrary values of R,
t0, and thold. In real patch-clamp experiments R can vary
from 2 to 43µm and the corresponding tdiff’s range (Fig-
ure 3, left) is plotted on the number line in Figure 5. The
conventional range for t0 and thold in patch-clamp experi-
ments is also shown in this figure.

0 s 590 s

tdiff

10 s 40 s

thold

5 s 300 s

t0

Figure 5. The range of possible values of tdiff, t0, thold.

We repeated the simulations of ICaL at various combi-
nations of the three time time constants. Two types of
rundown trends are predicted by the model—one in which
a typical saturating rundown occurs due to CDI like that
observed in Figure 4, the other is an ‘inverse’ rundown
where the magnitude of ICaL increases per sweep before
saturating. We find that when the dimensionless quantity
ζ = t20/(tdiff thold) is greater than 2, the rundown is of
the first type, otherwise it is of the second type. Further,
we find that when tdiff is the smallest time—there is al-
most no rundown, when t0 is the smallest—the rundown
is always inverse, and when thold is the smallest then run-
down trend can be predicted using ζ. This indicates that
CDI-induced rundown is directly affected by the amount
of buffer available near the LCCs and how the depleted [B]
is being replenished. Repeated draws of the three time con-

stants from the number line indicate that the probability of
no-rundown conditions is less than 5%.

This work suggests that CDI-induced rundown can be
avoided by using current recordings from small cells, or
alternatively by increasing the inter-pulse duration and the
initial time the buffer has to diffuse into the cell.
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