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Abstract 

Background: Aerobic fitness level (AFL) is a parameter 

closely related to a person's overall health. The gold 

standard of measurement is currently using expensive 

laboratory equipment.   

Aims: This study aimed to estimate AFL automatically 

using data measured with wearables. 

Methods: AFL was estimated in 2D space. The first 

dimension is the exertion level, and the second is the body's 

response to the exertion. Exertion level was determined 

based on metabolic equivalent calculated for each 

classified activity using the data of speed and elevation. 

The activity classification is based on deep neural 

networks. The body’s response estimation is based on 

heart rate calculated from ECG or PPG. 

The test set contained 27 subjects. The reference was 

measured under laboratory conditions using the gold 

standard method. AFL classification by ACSM guidelines 

was used.  

Results: AFL determined by our algorithm were 

0.44±0.09, 0.50±0.10, 0.53±0.09, 0.58±0.15, and 

0.70±0.07 for the reference classes very poor, poor, fair, 

good, and excellent, respectively. The correlation between 

the reference and determined values is 0.76.  

Conclusion: Our method showed promising results and 

will be further developed. 

  

 

1. Introduction 

Aerobic fitness level (AFL), also called 

Cardiorespiratory fitness (CRF), is strongly correlated with 

an increased risk of all-cause mortality. Specifically, AFL 

is considered one of the best predictors of the two most 

common causes of death in developed countries - 

cardiovascular disease and cancer. [1] 

According to conventional gold standard method, AFL 

is evaluated using the measured maximum oxygen 

consumption (VO2max) [2]. In previous works, many 

equations were proposed to determine AFL using the 

measured VO2max and other parameters such as age, 

gender, and weight [3], [4]. 

The disadvantage of the mentioned methods is the 

problematic measurement of VO2max. Accurate 

measurements can be done in the laboratory using 

breathing gas analysis. This measurement is time-

consuming and requires expensive laboratory equipment. 

In recent years, portable breath gas analysis masks have 

also been used to estimate AFL. With the help of this mask, 

it is possible to continuously measure oxygen consumption 

during movement and then predict the maximum oxygen 

consumption from these values [5]. However, this 

measurement still requires very obtrusive and expensive 

mask for breath gas analysis. In addition, the measured 

person usually has to perform a standardized measurement 

protocol. 

The main objective of this article is to present a method 

for estimating AFL without the need for measurements 

using a mask to analyze oxygen consumption. Our method 

only needs GPS and accelerometer (ACC) data and 

continuously measured heart rate (HR) – obtained from 

electrocardiogram (ECG) or photoplethysmogram (PPG). 

All these quantities can be obtained by smartwatches 

commonly available in the population. 

In addition, our method does not require the analyzed 

individual to perform a standardized protocol. AFL is 

continuously calculated for the measured subject during 

the activities which the subject performs during the day. 

 

2. Method 

The proposed method for estimating AFL is based on 

the automatic assessment of the intensity of the performed 

activity and the body's response to this activity (Figure 1). 

The activity's intensity is determined by user-independent 

parameters (chapter 2.3). Conversely, the body's response 

is determined according to the HR (chapter 2.5). 
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Figure 1. Block diagram of the proposed method. 

 

2.1. Data 

The performance of our algorithm was verified on a 

total of 27 subjects. The subjects performed a measurement 

consisting of rest, walking, running, and cycling phases. 

The signals were measured using five wearable devices 

(Table 1). ACC data were measured at 3 body’s parts – 

wrist (Empatica), chest (Faros), and instep of the foot 

(BiosignalsPlux). Reference VO2 max and AFL were also 

measured for each subject in the laboratory. 

 

Table 1. Measured signals. 

 

Device  Measured signals Sampling 

frequency [Hz] 

Empatica E4  PPG, ACC 64, 32 

Faros ECG, ACC 1000, 100 

BiosignalsPlux ACC 1000 

Mobile phone GPS  

VO2Master VO2  

 

2.2. Activity classification 

Activity classification is performed based on signals 

from up to three triaxial ACCs (chapter 2.1). Currently, 

three different types of activities (walking, running, and 

cycling) and rest are supported by the proposed AI 

algorithm; other activities are not supported in this work. 

The proposed multi-input neural network model is 

based on a combination of convolutional, recurrent, and 

fully connected layers. The activity is classified on the 

basis of an analysis of a 10-second data chunk. It contains 

raw data from ACCs mentioned above. From the raw data, 

features describing the signal in the static, time, and 

frequency domains are extracted. 

The following feature groups are acquired by feature 

extraction (number of features): 

• statistical (5),  

• time-domain (3),  

• frequency domain (12).   

For each ACC axis, a total of 20 features are extracted 

from one data chunk. Together with the raw data, they are 

used as input to the proposed neural network model. This 

approach reduced confusion between activities like fast 

walking and running.  

In order to minimize overfitting, some regularization 

mechanisms were used, such as dropout layers, L1 and L2 

regularization of selected neural layers, and data 

augmentation. 

 

2.3. Exertion level assessment 

The body's exertion was quantified using the metabolic 

equivalent of task (MET). MET was calculated according 

to activity type by one of the following equations [6], [7]:  

𝑀𝐸𝑇𝑤𝑎𝑙𝑘 =
0.1∗𝑣+1.8∗𝑣∗𝑖𝑛𝑐

3.5
+ 1, 

𝑀𝐸𝑇𝑟𝑢𝑛 =
0.2∗𝑣+0.9∗𝑣∗𝑖𝑛𝑐

3.5
+ 1, 

𝑀𝐸𝑇𝑐𝑦𝑐𝑙𝑖𝑛𝑔 =
1.163∗𝑤𝑎𝑡𝑡

0.24∗𝑤𝑒𝑖𝑔ℎ𝑡
+ 1, 

where v and inc are speed and inclination coming from 

GPS data, and watt is cycling wattage – the power subject 

produces with legs to get the bike going. Cycling wattage 

was estimated based on multiple information about gear, 

cycling style, and external conditions. More detailed 

information is in [7], [8], [9]. 

For the resting phase, we assumed that MET starts to 

decrease asymptotically to 1 after the active part. In our 

work, we estimate this fact using the following exponential 

function: 

𝑀𝐸𝑇𝑟𝑒𝑠𝑡 = (𝑀𝐸𝑇𝑙𝑎𝑠𝑡 − 1)𝑒−𝜆𝑡 + 1, 
where METlast is currently the last known MET value 

before the rest phase starts,  determines the steepness of 

the exponential decline and is empirically set to 0.035, and 

t expresses the duration of the rest phase. 

Finally, we divided MET values into five exertion levels 

(Table 2), ranging from light activities (1), such as 

standing, to vigorous and heavy activities (5), such as 

intensive running or cycling. 

 

Table 2. Conversion of MET values to exertion levels. 

 

Exertion level MET 

1 < 2 

2 2-4.5 

3 4.5-7.5 

4 7.5-11 

5 > 11 

 

2.4. Heartbeats detection 

Heartbeats detection is used for the subsequent 

calculation of the HR, which is important for estimating 

the body's response. 

A previously introduced QRS complex detector [10] 

was used to detect the heartbeats in the ECG. This is based 

on an ensemble of three detectors based on continuous 
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wavelet transform, phasor transform, and Stockwell 

transform.  

If no ECG signal is available, heartbeats were detected 

in the PPG signal. For heartbeats detection and HR 

calculation, the algorithm based on stationary wavelet 

transform was used. The PPG signals were decomposed 

into several frequency bands, the proper band where the 

heartbeats manifest the most was selected, and then the 

peaks were detected and HR calculated. 

 

2.5. Body’s response assessment 

The body's response to exertion is evaluated using a 

modified Borg's scale (RPE) (Table 3). The evaluation is 

based on HR.  The current HR is compared with the 

maximum HR, and the HR part of the body’s response is 

classified into one of five classes. 

 

Table 3. Modified Borg's scale (RPE) – conversion of HR 

to body's response levels. 

 

Body's response Current HR/max HR [%] 

1 < 60 

2 60-70 

3 70-80 

4 80-90 

5 90-100 

 

For the body’s response evaluation, the maximum HR 

is necessary. It is calculated using the following equation:  

 

HRmax = 220 – age.  

  

If the age is unknown (not set by the user), a constant 

HRmax of 185 beats per minute (bpm) is used. 

 

2.6. Aerobic fitness level assessment 

The AFL assessment is done in two dimensions (Table 

4). The first dimension is an exertion level (chapter 2.3.), 

and the second is a body’s response to the exertion (chapter 

2.5.). The AFL is classified into nine levels – critical, very 

poor, poor, low, normal, medium, high, expert, and 

excellent. 

According to Table 4, AFL is evaluated continuously 

for each recorded activity. The resulting AFL is the median 

AFL during the measurement. If the recorded activity falls 

into at least 3 exertion levels, the AFL calculated during 

level 1 is not included in the median. 

 

 

 

 

 

 

Table 4. Aerobic fitness level assessment. 

 

  Exertion level 

  1 2 3 4 5 

B
o

d
y
 r

es
p

o
n

se
 1 Normal Medium High Expert Excellent 

2 Low Normal Medium High Expert 

3 Poor Low Normal Medium High 

4 
Very 

poor 
Poor Low Normal Medium 

5 Critical 
Very 

poor 
Poor Low Normal 

 

The resulting AFL was converted to a number between 

zero and one for further comparison of the algorithm with 

reference. First, the determined AFL was assigned a 

number from zero (category critical) to eight (category 

excellent). The range from zero to one was then provided 

by dividing by eight. 

 

3. Results 

The activity classification accuracy of the proposed 

algorithm reached 97.90 % on the validation dataset and 

92.90 % on the test dataset. The highest error rate on the 

test dataset was due to confusion between walking and 

running activities (3.57 %). 

 

Table 5. Confusion matrix of the activity classification on 

the test dataset. Values in the table represent the number of 

10-second segments. 

 

  Predicted class 

  Rest Walking Running Cycling 

T
ru

e 
cl

as
s Rest 65 0 6 0 

Walking 2 78 12 0 

Running 3 0 81 0 

Cycling 0 1 0 88 

 

The MET estimation was validated by comparison with 

reference values measured with the VO2Master mask 

(Figure 3). 

  

 Figure 3. MET units estimation versus the VO2Master 

mask reference for one measurement; R is rest. 
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The accuracy of MET estimation was validated on a 

total of 20 volunteers (those with available VO2Master 

mask). Measurements were taken simultaneously with the 

VO2Master mask and subjects completed approximately 

40 minutes of measurement. The measurement protocol 

included walking, running, and cycling phases alternated 

with a short rest period. The accuracy of the MET unit 

estimation in each phase as well as the accuracy of the 

overall measurement averaged over 20 volunteers can be 

seen in Table 6. 

  

Table 6. MET unit estimation accuracy for the different 

activity; mean error is the estimate minus reference value. 

 

Activity Mean error Mean absolute error 

Rest -0.32 ± 1.26 0.86 

Walking -1.10 ± 0.94 1.11 

Running 0.70 ± 1.14 0.26 

Cycling -1.10 ± 1.42 1.41 

Overall -0.48 ± 0.97 0.67 

 

The method for AFL estimation was validated by 

comparison with reference values calculated according to 

the equations given by ACSM Cardiorespiratory fitness 

classification guidelines [3]. The VO2max for calculating 

the reference AFL was measured in a laboratory. 

A comparison of the determined and reference AFL 

groups is in Table 7. Our AFL values are calculated as the 

mean and standard deviation of the AFL of individuals 

belonging to the same reference AFL category. 

 

Table 7. Reference and estimated values of AFL. 

 

Reference AFL# Estimated AFL# Number of 

subjects 

Very poor 0.44 ± 0.09 2 

Poor 0.50 ± 0.10 4 

Fair 0.53 ± 0.09 8 

Good 0.58 ± 0.15 8 

Excellent 0.7 ± 0.07 5 

Superior - 0 

# The reference categories do not correspond to our 

categories in Table 4. Therefore, we converted our verbal 

ratings into numbers for comparison (see chapter 2.6) 

 

The correlation between the reference and estimated 

AFL values is 0.76.  Reference values were converted to 

numbers from one (very poor) to five (excellent) to 

calculate the correlation. 

 

5. Conclusion 

We presented a method for automatic AFL estimation. 

Our results correlate with AFL determined in laboratory 

conditions using exhaled gas analysis, which is the gold 

standard method. In contrast, our method only needs 

continuously sensed HR and movement data from GPS and 

ACC. All these quantities can be obtained using devices 

widespread in the population, such as smartwatches. 
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