Identifying Spatiotemporal Dispersion in Catheter Ablation of Persistent Atrial Fibrillation: a Comparative Study of Machine Learning Techniques Using Both Real and Realistic Synthetic Multipolar Electrograms

Sara Frusone 1, Rafael Costa de Almeida 1, Douglas Almonfrey 2, Fabien Squara 3, Vicente Zarzoso 1

1 Université Côte d’Azur, CNRS, I3S Laboratory, Sophia Antipolis, France
2 Federal Institute of Espírito Santo, Vitoria, Brazil
3 Université Côte d’Azur, Pasteur Hospital, Cardiology Department, Nice, France

Abstract

Atrial fibrillation (AF) is a common heart condition affecting the elderly population and is a significant risk factor for strokes, making it a growing public health concern. Catheter ablation (CA) is the most effective long-term treatment for persistent AF. Recently, a novel CA approach based on spatiotemporal dispersion (STD) has been proposed. This technique targets STD patterns associated with active zones responsible for sustaining the arrhythmia. We present three datasets to be used to train and test different machine learning models in automatically identifying STD patterns from multipolar electrograms (EGM). Two different real dataset have been acquired from Nice Pasteur University Hospital and labelled by experts. To address the challenging scenario presented by the real data, a synthetic dataset has been created generating EGM records resembling real-world scenarios, using openCARP cardiac electrophysiology simulation software. We evaluate 13 machine learning techniques to demonstrate the challenging scenario of the real data, and we analyze their performance in the proposed datasets. Results show that the synthetic data are promising as training set for classifiers evaluated on real data, but a deeper statistical analysis is necessary to confirm these findings.

1. Introduction

Atrial fibrillation (AF) is a common irregular heart rhythm that primarily affects the elderly population and is a major cause of stroke. As the population continues to age, AF is becoming a significant public health concern [1]. To improve the understanding and management of this complex condition, physiological signal analysis and machine learning techniques are being used. Catheter ablation (CA) is currently the most effective long-term treatment for persistent AF, but its success rates may vary [2]. Although an increasingly larger number of patients are eligible for CA, the optimal ablation strategy for persistent AF remains elusive. Some past studies, based on the visual selection of target electrograms (EGMs), have suggested that applying lesions targeting complex fractionated atrial electrograms (CFAE) is beneficial to patients with persistent AF [3]. CA based on spatiotemporal dispersion (STD) has been recently proposed to treat persistent AF effectively based on the Pentaray multielectrode mapping catheter (Biosense Webster Inc., Irvine, CA, USA). STD patterns are thought to be associated with active zones sustaining arrhythmia, and are targets for successful ablation [4]. STD areas are defined as clusters of EGMs, either fractionated or non-fractionated, that display interelectrode time and space dispersion at a minimum of two adjacent bipoles such that activation spreads over > 70% of the AF cycle length. STD patterns are identified visually by the interventional cardiologist following those rules. The manual classification of the signals represents a substantial limitation to the standardization of EGM-based approaches with large operator differences in experience and learning curve profiles [3]. Also the communication between the cardiologist performing the intervention and the software engineer annotating the data in the recording system is a challenging step, which unavoidably produces errors in the annotation process, and consequently in the data labels. Another important limitation concerns the strong imbalance between the two classes in the available datasets, STD patterns do not occur as often as non STD.

In the literature, a technical performance analysis of novel machine learning (ML) models trained to automatically classify STD patterns (such as VX1 software from Volta medical [3]) is missing. In this context we present an automatic classification analysis in two real datasets and a synthetic one. The first contains raw data from Nice Pasteur University Hospital (CHU). The second one is a curated version of the first. The third dataset is synthetic. The objective of using different datasets is to help in the assessment of machine learning models, trained on multipo-
lar EGMs for automatically locating STD patterns. In fact, the models are trained and validated in different configurations of the raw, curated and synthetic data. The final end would be providing operators with an automatic labelling tool that identifies the presence or absence of STDs as a support for the human based procedure.

This study relies on multiparametric ML algorithms trained on annotated signals from intracardiac EGMs and tested on the mentioned different data configurations. In a further step, those models are expected to support interventional cardiologists, helping EGMs interpretation and guiding CA procedures based on STD pattern identification.

2. Datasets

2.1. Real datasets

In this study, we consider two different real dataset acquired from the Cardiology Department of Nice Pasteur CHU using the 10-pole Pentaray mapping catheter. Each sample in the raw dataset consists of 10 time series with 2500 timesteps each, acquired from 53 persistent AF patients. The raw dataset sometimes presents wrong labels, due to communication delays in the annotation procedure between the cardiologist and the software engineer. The curated dataset comprises only a subset of samples revisited and relabeled after the intervention (offline) by the same specialist. This solved the delay in the annotation procedure during the ablation procedure using the Carto software.

2.2. Synthetic data generation

The use of synthetic data is the answer to many problems encountered by experts in our domain [5]. In particular, the STD classification, the interoperator subjectivity, the lack of a precise labelling protocol, the annotation procedure, i.e., communication delay between doctors and engineers during the intervention, are challenging. Other issues are related to privacy, anonymization and security, and not last the amount of curated data. It is difficult to find clinicians to label and check the annotation of real data.

In order to generate realistic synthetic multipolar EGMs, tissue patches of the heart were generated by computer simulations. Ionic current and conductivity parameters were set to create fibrosis in the simulated heart tissue, leading to rotor-like propagation patterns linked to STD behavior. The fibrotic, scar and normal tissue patterns were simulated by three different cell types based on the Courtemanche model [6] with variations in the ionic charges. The fibrotic patterns were created using clustering algorithms designed to generate block regions with specific conductivity and cell types. An example of the resulting activation map is shown in Figure 1. Each tissue patch measures 273 by 273 pixels (6.7 by 6.7 cm), matching the real scaling. Using the openCARP cardiac electrophysiology simulation software, realistic 10-lead EGM records were synthesized from the tissue patches, simulating the Pentaray multipolar catheter.

The advantages provided by the synthetic data generation process are manyfold. It is possible to change the degree of fibrosis and electrical conductivity by modifying the tissue patch generation parameters. The catheter position can be moved around in the synthetic tissue, and the signal is then recorded.

We considered five different catheter positions in a tissue patch, because in real life scenarios, during CA interventions, cardiologists do not consider very small rotations or movements of the sensor from one recording position to another. It would be time consuming and the information recorded would not change much. From each catheter position per patch we recorded the 10-lead EGMs. We set the length of the signal recordings to 2.5 seconds to be consistent with the real data annotation procedure performed at Nice Pasteur CHU’s Cardiology Department using Carto software. An example of the simulated catheter on the tissue patch is presented in Figure 2, where the sensor poles have life-size dimension (radius equal to 0.1 cm). At that stage, we were able to produce a synthetic dataset of multipolar EGM samples from synthetic signal recordings. It was built considering 37 different synthetic patients. The cardinality of the dataset opens new perspective concerning the kind of AI methods that can be applied.

Figure 1. An example conductivity map is shown. The different colors represent different cell types and different conductivity values. Yellow regions represent Courtemanche ionic model with low conductivity, which mimics scar tissue. Green regions represent Courtemanche ionic model with medium conductivity, which mimics fibrotic tissue but differs from scars. Purple regions represent Courtemanche ionic model with high conductivity, which mimics normal tissue.
Finally, Table 1 presents the different configurations in terms of number of samples per class. By the term sample we mean a 2.5 s recording of ten EGM signals acquired from ten bipolar electrodes, one signal per lead.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Patients</th>
<th>Samples</th>
<th>STD</th>
<th>non STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>53</td>
<td>13888</td>
<td>1035</td>
<td>12853</td>
</tr>
<tr>
<td>curated</td>
<td>53</td>
<td>430</td>
<td>112</td>
<td>318</td>
</tr>
<tr>
<td>synthetic</td>
<td>37</td>
<td>64680</td>
<td>32340</td>
<td>32340</td>
</tr>
</tbody>
</table>

3. Classification approaches

In our approach to detect STD patterns, we employed a diverse set of features and classifiers. For classical machine learning classifiers, our feature set included voltage-based features. We computed the average of the mean, standard deviation, maximum, and minimum values for each lead in the raw signal. Furthermore, we derived the maximum value across all leads. For the convolutional neural networks (CNN), the 10 leads of the raw signal are treated as an image. Regarding the classification step, we explored 11 different classical techniques, and two neural networks. The classical ML techniques include Random Forest, Support Vector Machines, Logistic Regression, Decision Trees, K Neighbors, Gaussian Naive Bayes (GaussNB), Gradient Boosting, Extreme Gradient Boosting (XGB), Ridge, Multi-Layer Perceptron, and AdaBoost.

For the CNN, we normalized each lead to have unit L2 norm. Prior to the convolutional layer, we subjected the raw signal to average pooling with a 1x2 pool size. The core of the network comprised a single convolutional layer employing a 3x75 kernel to also capture temporal dependencies between leads. Subsequently, we applied average pooling with a 2x110 window. This was followed by one dense hidden layer with 4 units. The first model consists of 395 parameters, representing less than 1/10 of the number of training samples in the raw dataset. In the second network we added one more kernel in the convolutional layer and four more within the hidden layer. This second model included 1109 parameters. It was expected to better accommodate a higher amount of data from the synthetic dataset.

4. Training and evaluation methodology

In our methodology, we followed a structured approach for training and evaluation. The experiments were performed in the following configurations, for both classical ML methods and CNN approaches:

- train on the raw dataset, test on the curated dataset;
- train and test on the synthetic dataset;
- train on the synthetic dataset, test on the curated dataset.

In all cases, splits of training and test set were patient aware. For the classical ML approaches, we adopted a nested cross-validation strategy to determine the optimal algorithm among classical machine learning algorithms. An inner loop with two-fold cross-validation was combined with a two-fold outer loop. In the inner loop, we conducted a grid-search procedure, exploring classical hyperparameter values for each classifier. Feature scaling and data sampling were also considered. This approach enabled effective model parameter tuning, ensuring robustness in performance assessment through the outer loop. Then, for the CNN, we performed a two-fold cross-validation procedure with standard hyperparameters as a learning rate of 0.01 and the Adam optimizer. Given the model’s relatively small size, explicit regularization was omitted. To address class imbalance, we employed over-sampling of the minority class during training. Additionally, we incorporated EarlyStopping to mitigate overfitting and enhance training efficiency. Finally, our chosen key performance indicators (KPI) encompassed the F1 score (F1), accuracy (Acc), area under the roc curve (Auc roc), positive predictive value (PPV), sensitivity (Sens), specificity (Spec), and negative predictive value (NPV).

5. Results and discussion

Table 2 presents a summary of the test performances of the best models, in the different above mentioned configurations. For each datasets configuration, we present the best model in terms of F1 score among the eleven classical ML methods (lines 1 to 3) and two CNNs (lines 4 to 7) tested in this work.

From Table 2 we can note the challenging scenario presented by the curated dataset for all employed methodologies of classification. It is important to mention that when
<table>
<thead>
<tr>
<th>no.</th>
<th>Train</th>
<th>Test</th>
<th>Method</th>
<th>F1 score ±</th>
<th>Acc</th>
<th>Auc roc</th>
<th>PPV</th>
<th>Sens</th>
<th>NPV</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>raw</td>
<td>curated</td>
<td>LogisticRegression</td>
<td>0.419 ± 0.084</td>
<td>0.619</td>
<td>0.620</td>
<td>0.384</td>
<td>0.563</td>
<td>0.825</td>
<td>0.660</td>
</tr>
<tr>
<td>2</td>
<td>synthetic</td>
<td>synthetic</td>
<td>XGB</td>
<td>0.435 ± 0.075</td>
<td>0.837</td>
<td>0.919</td>
<td>0.296</td>
<td>0.832</td>
<td>0.984</td>
<td>0.838</td>
</tr>
<tr>
<td>3</td>
<td>synthetic</td>
<td>curated</td>
<td>GaussianNB</td>
<td>0.430 ± 0.028</td>
<td>0.365</td>
<td>0.604</td>
<td>0.281</td>
<td>0.919</td>
<td>0.858</td>
<td>0.170</td>
</tr>
<tr>
<td>4</td>
<td>raw</td>
<td>curated</td>
<td>CNN (#395)</td>
<td>0.430 ± 0.021</td>
<td>0.523</td>
<td>0.576</td>
<td>0.312</td>
<td>0.688</td>
<td>0.805</td>
<td>0.464</td>
</tr>
<tr>
<td>5</td>
<td>synthetic</td>
<td>synthetic</td>
<td>CNN (#395)</td>
<td>0.713 ± 0.197</td>
<td>0.946</td>
<td>0.928</td>
<td>0.649</td>
<td>0.825</td>
<td>0.986</td>
<td>0.955</td>
</tr>
<tr>
<td>6</td>
<td>synthetic</td>
<td>curated</td>
<td>CNN (#395)</td>
<td>0.270 ± 0.015</td>
<td>0.421</td>
<td>0.386</td>
<td>0.202</td>
<td>0.411</td>
<td>0.672</td>
<td>0.426</td>
</tr>
<tr>
<td>7</td>
<td>synthetic</td>
<td>curated</td>
<td>CNN (#1109)</td>
<td>0.415 ± 0.018</td>
<td>0.402</td>
<td>0.513</td>
<td>0.278</td>
<td>0.813</td>
<td>0.796</td>
<td>0.258</td>
</tr>
</tbody>
</table>

testing with the synthetic data, we resampled the test set to have the same class imbalance of the real dataset. Also, the synthetic / curated scenario demanded normalizing the lead signals to unit L2 norm, since the two dataset have different amplitude values.

When comparing lines 2 and 5, the CNNs take better advantage of the higher amount of data provided by the synthetic dataset, especially when a bigger model is employed in the synthetic / curated scenario (lines 6 and 7). This opens the possibility of a better tuning of parameters when using convolutional and deep approaches with the proposed synthetic data. However we must remark the possible limitations of CNN, like the simplification we applied to run the experiments. Finally, from lines 1, 3, 4 and 7 we can notice that the synthetic data as a training dataset was able to provide results in pair with those obtained with the raw dataset. This indicates the synthetic data can reasonably represent real data, which supports its use with better tuned parameters. It is important to mention that while all CNN experiments are reproducible, in order to have more generalized conclusions, a more robust training procedure must be implemented using the F1 score to guide the training process in a hyper parameter search scenario, as done for the classical ML approach.

6. Conclusion

We presented different artificial intelligence based algorithms designed for automatic identification of STD patterns from real and synthetic multipolar EGMs. This study brings us to a new understanding of the challenging scenario of STD pattern classification. Besides, it shows that the exploitation of synthetic data can be useful in the present classification problem. In future work, we will consider better tuned convolutional and deep models, improving statistical robustness. Additionally, we will extend the synthetic data to a more realistic 3D model of the heart.

Acknowledgments

This work has been supported in part by the French government, through the 3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA 0002. V. Zarzoso holds the 3IA chair “IAblation”.

References

Address for correspondence:
Sara Frusone
sara.frusone@etu.univ-cotedazur.fr
I3S Laboratory, UMR 7271, Université Côte d’Azur, CNRS
Les Algorithmes, Euclide-B
2000 routes des Lucioles, CS 40121
06903 Sophia Antipolis Cedex, France