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Abstract

Detection of obscured P waves remains a largely un-
explored topic. This study proposes a weakly supervised
learning approach for P wave feature embedding by lever-
aging surrogate labels and 3265 eight-lead electrocardio-
graphic (ECG) signals with diverse cardiac rhythms, in-
cluding supraventricular tachycardias, atrial fibrillation,
and paced rhythms.

The proposed method employs a temporal convolutional
neural network and multiple instance learning to learn
pyramidal feature embeddings that estimate both labeled
and unlabeled instances of the P wave. The fine-tuned
model achieved a temporally aggregated Dice score of
81.1%, outperforming the baseline model by 1.0%. On
the subset with sinus rhythms and minor rhythm irregular-
ities, the model consistently achieved recall and precision
of around 84–85% for P wave onset and offset.

The framework can be used to learn embeddings cor-
related with the distribution of the atrial depolarization,
using only a fraction of labeled samples. Surrogate labels
allow us to embed more detailed context, which may en-
hance the performance and interpretability of deep neural
networks in downstream tasks in the future.

1. Introduction

Alterations in the morphology and timing of P waves
are important clinical markers for the diagnosis and risk
stratification of a variety of cardiac conditions, including
atrioventricular (AV) blocks, supraventricular tachycardias
(SVTs), and atrial fibrillation (AF) [1, 2].

Several factors challenge P wave segmentation, namely,
it has a relatively low amplitude, high inter-individual vari-

ability in morphology, and is often frequent obscured by
the QRS complex and T wave, which exhibit similar fre-
quency content [3].

A number of approaches have been proposed for P wave
segmentation, such as correlation-based methods [4, 5],
QRS-T suppression employing subtraction of a template
[6] or source separation techniques [7], and deep learning
approaches extracting P wave features by means of super-
vised learning [8]. To date, only two studies [3, 9] have
investigated the detection of P waves in pathological car-
diac rhythms, however, excluding obfuscated P waves due
to the aforementioned challenges.

The aim of this work is to extract the microfeatures
representing superimposed P waves by utilizing surrogate
labels retrieved inexpensively from intracardiac electro-
grams (EGMs). This reformulates the problem from learn-
ing with only a subset of labeled P waves (instance-wise
incomplete information) to a sample-wise incompleteness,
where some part of each wave is labeled.

2. Methods

2.1. Data

3265 8-lead ECGs (708 patients indicated for electro-
physiology procedure, 41.7% female, median age 36.6
years, median duration 11.0 seconds) recorded by the Ab-
bott WorkMate 4.3 system at 2000 Hz with 78 nV/LSb
resolution. Signals were undersampled to 250 Hz using
anti-aliased decimation and processed with a bandpass fil-
ter (0.5–40Hz).

The ECGs were classified into four groups contained:
(SR) 1771 sinus rhythms and less severe arrhythmias, such
as premature beats, AV blocks, and bundle branch blocks;
(SVT) 1036 SVTs, mostly caused by accessory pathways
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and nodal reentry circuits; (AF) 458 cases of AF/flutter;
(ST) 770 rhythms from atrial/ventricular artificial pacing.

A stratified randomized split into 70:30 training and val-
idation sets (DBV) was performed to ensure similar distri-
bution of SR, SVT, AF and ST in both sets. Figure 1 shows
the steps involved in orchestrating the dataset.

Figure 1. Schema of the dataset preparation.

2.2. Incomplete labeling

Surrogate labels of atrial beats were obtained by
segmenting 5-channel intracardiac electrograms (EGM)
recorded from a diagnostic catheter placed in the coronary
sinus (CS). A custom-made algorithm [10] was used to de-
tect early and late activation in the CS. Due to their pre-
dominantly random nature, f-waves were categorized into
a negative class.

The measurements roughly indicate depolarization
times of the left atrium, providing incomplete information
about overall P wave duration. Formally, an ECG signal
can be expressed as a set X = {x1, . . . , xn}, where xi is
the i-th sample. The ground truth labels aren’t available for
all samples xi, so the set of labeled data Y = {y1, . . . , yk},
where k ≪ n, represents known ground truths, and n − k
is the number of unidentified samples.

2.3. Feature extraction

We employed a temporal convolutional neural network
(CNN) to learn a mapping h : X 7→ H , where h is a fea-
ture extractor and H represents vector embeddings. The
CNN incorporates a ResNet-50 backbone encompassing
four residual stages with residual units combining preac-
tivated 1 × 7 kernels and a 1 × 1 bottleneck with a 50%
compression factor. The filter dimensions across encoder
stages consist of 128, 256, 512, and 1024 filters. A feature
pyramid network (FPN) [11] was integrated as a decoder
allowing for the extraction of semantically rich features
Hs from multiple scales. For more details please refer to
the source code.

2.4. Multiple instance learning

The objective was to find f : H 7→ Ŷ given the ground
truths Y , where f(H) is an estimator used to model the
posterior probability ŷi ∈ of being a part of the P wave for
both labeled and unlabeled instances.

We modeled f(H) using a multiple instance learning
(MIL) paradigm. MIL frames the original problem to
learning f(H) to predict the label Y ∈ {0, 1} of a bag
given its instances. A bag is defined as a subset Hm ⊆ H ,
and is considered positive if and only if at least one of its
instances is labeled as positive.

Multi-scale pretraining (Figure 2, top part) employed
embeddings Hs from the top three FPN layers. Bags were
created by splitting each Hs into constant width regions
Hs

m lasting approximately 96, 192, and 384 ms (33% over-
lap). A label was assigned to each Hs

m according to the
MIL principle. A multilayer perceptron (MLP) projection
network fproj(H

s
m) combined the features within the re-

gion m, followed by a sigmoid function σ to model the
probability of the bag label denoted as Y ∗

MIL.
Next, we performed the fine-tuning (F-T, Figure 2, bot-

tom part) of the h using the MLP classifier fclass. The
fclass reduces the rank of the top-most embeddings H0 to
1× n creating a probability distribution map Ŷ . Similarly
to a pretraining, a constant time window is used to splitting
the Ŷ into m regions 160 ms wide regions (50% overlap).
Then, temporal max pooling is applied to aggregate the
probabilities for each Ŷm, to model fine-grained Y ∗

MIL.
Both h and f were optimized using the cross-entropy

loss LwBCE, reweighted by the inverse of label temporal
occurrences. Naive oversampling was applied to address
the imbalance between the SR, SVT, AF, and ST groups.

2.5. Data augmentation

The function g(X,Y ) was utilized to reverse and shift
the temporal axis to mitigate overfitting arising from the
stochastic interrelationship within the P-QRS-T sequence,
and from the constant P wave position relative to region
splitting. Other data augmentations (DAs) involved ran-
dom temporal and voltage scaling, inverse polarity, arti-
ficially generated Gaussian white noise, 50 Hz powerline
interference, and stimulation artifacts.

2.6. Training setup

The AdamW algorithm with decoupled L2 regulariza-
tion and default β1, β2 was employed for the optimiza-
tion. Convolutional and normalization layers were ini-
tialized using the Kaiming and constant initialization, re-
spectively. The initial learning rate µ0 = 0.001 and a
batch size of 64 were determined through the grid search.
Learning rate was scheduled using warm-up phase for the
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Figure 2. Multiple instance learning framework for the segmentation of hidden P waves using incomplete surrogate labels.

first 20 epochs, followed by a reduce-on-plateau strategy
with decaying factor of 0.1. The code was implemented in
Python 3.8.1 using the PyTorch 1.12.1, and is available at:
www.github.com/jakubhejc/MILPNet.

3. Results and discussion

The Dice score DSM [%] was computed for output
scores Y ∗

MIL. Thresholded sequence Ŷ (default limit of
0.5) was employed to estimate recall (Rec.) and precision
(P+) for each fiducial point of the P wave regarding the sur-
rogate references Y and tolerance of 60 ms. Overall results
on the validation set DBV are provided in Table 1.

Table 1. The performance of the multi-scale and fine-
tuned (F-T) model on the validation set DBV and SR subset
DBV:SR. Symbol + represents the presence of the P wave.

DBV DBV:SR
F-T + Pon Poff Ppeak Pon Poff Ppeak

DSM
Yes 81.1
No 80.1

Rec. Yes 0.63 0.64 0.63 0.85 0.85 0.84
No 0.59 0.59 0.60 0.83 0.83 0.83

P+ Yes 0.69 0.66 0.69 0.84 0.84 0.85
No 0.62 0.60 0.62 0.83 0.83 0.83

P wave segmentation in the presence of arrhythmias is
a non-trivial task, as demonstrated by our results. The
F-T model outperformed the baseline model, achieving a
Dice score of 0.811 compared to 0.801 without fine-tuning.
For the Pon, Ppeak, and Poff, the F-T model also performed
slightly better, with a maximum recall and precision of

0.63 and 0.69, respectively. On the DBV:SR subset, the F-
T model consistently achieved recall and precision scores
of around 0.84-0.85 across all fiducial points. This is con-
sistent with Saclova et al.[9], who found that P wave detec-
tion performance varied widely, with recall and P+ ranging
from 78.1–93.1% and 72.0–88.6%, respectively. Higher
performance was observed for datasets with easily distin-
guishable P waves.

Visual analysis showed that the model tended to approx-
imate the temporal co-occurrence of the P-QRS-T waves,
resulting in false P wave predictions in some cases. This is
likely due to several factors: a) the complexity of the opti-
mization goal and insufficient training data for the model to
learn uncorrelated representations of superimposed P wave
and QRS complex; b) suboptimal settings of temporal hy-
perparameters.

Despite these limitations, the study demonstrates that
the MIL can be used to capture the temporal dynamics of
the ECG signal and to learn embeddings correlated with
the distribution of the atrial depolarization, even with only
a fraction of labeled samples. Surrogate labels allows us
to embed representations with more detailed context (see
Figure 3), which may enhance the performance and inter-
pretability of deep neural networks in downstream tasks.

4. Conclusion

Conventional weakly-supervised learning employing
the MIL paradigm may not be sufficient for the effective
extraction of microfeatures representing superimposed P
waves. Novel regularization techniques may be required to
address possible overfitting to the P-QRS-T temporal dis-
tribution, particularly in deep learning frameworks. ECG
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Figure 3. Examples of challenging pathological ECGs from DBV with heat maps Ŷ generated by CNN model. Red squares
– surrogate labels Y; red dashed line – the upper bound of normalized output scores.

segmentation algorithms should be evaluated using com-
prehensive datasets incorporating diverse cardiac rhythms.
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