Real-time Heartbeat Classification Based on Parallel QRS Detection

Wojciech Reklewski?, Jeremiasz Potoczny?, Marek Miskowicz!, Piotr Augustyniak®

LAGH University of Krakow, Krakow, Poland

Abstract

The main challenge for automatic classification of
cardiac arrhythmias with battery-operated devices is to
achieve good classification results without high
computational load and related high energy consumption.
In this paper, we present a heartbeat classification
method that uses the differences in R-peak time locations
detected by multiple low power QRS detection algorithms
operating in parallel. The outputs of the detectors are the
inputs to the decision tree classifier. The classification is
divided into three QRS morphology types: (1) Normal
and Atrial Premature, (2) Ventricular, and (3) Other. The
overall accuracy (ACC) of the proposed classification
method for test dataset is 90.52%. The detailed results
are as follows: Positive Predictivity (PPV) 93.82%,
Sensitivity (Se) 95.51% for Normal and Atrial Premature
class; PPV=84.66%, Se=76.33% for Ventricular class;
PPV=84.33%, Se=79.29% for Other class. The proposed
arrhythmia classification method is applicable for real-
time mobile ischemia detection and HRV analysis.

1. Introduction

Wearable electronic devices are becoming increasingly
comparable to professional health care devices [1]. While
the primary design objective for professional medical
equipment is to maximize performance, for wearable
battery-operated devices, the main concerns are power
consumption, available memory, device size and weight.
These factors should be optimized possibly without
compromising diagnostic performance. Another design
criterion is the type of output received from the device,
whether it is raw data, preprocessed data, or disease
detection supporting medical diagnosis. The continuous
monitoring of patients' heart during their daily activity
began with the invention of the Holter ECG monitors in
1949 [2]. Nevertheless, standard Holter ECG devices
produce large volumes of data, necessitating significant
amounts of a doctor's time for data analysis before
reaching a diagnosis. The research on automatic detection
of arrhythmia and other cardiac disorders accelerated with
the computer revolution of the 1970s and continues to
progress with machine learning and data mining [3, 4].
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The automatic ECG-based arrhythmia detection
classification consists of four processing steps: (1) ECG
signal preprocessing, (2) QRS detection and signal
heartbeat segmentation, (3) feature extraction and (4)
arrhythmia classification [3].

The ECG signal preprocessing and QRS detection are
subject of research since decades and many algorithms
have been proposed for ambulatory equipment [5] with
battery-operated devices [6].

Feature extraction is the key stage in automatic
arrhythmia classification [3]. It involves extracting
information from heartbeats that can be used for
classification. The most popular features include
heartbeat interval, QRS complex duration, and points of
the segmented ECG curve. Other methods include linear
predictive coding, high-order accumulates, clustering,
correlation dimension and largest Lyapunov exponent,
Hermite transform, and local fractal dimension. The best
performance results are reported using wavelet transform
methods [3], although these require computationally
intensive calculations.

Approaches to arrhythmia classification can be
grouped into five main categories: support vector
machine (SVN), artificial neural network (ANN), linear
discriminant (LD), Reservoir Computing with Logistic
Regression (RC), and other approaches (e.g., decision
tree, nearest neighbor, clustering, hidden Markov models,
hyperbox classification, optimum-path forest, conditional
random fields and rules-based models) [3].

Despite  significant research efforts, automatic
classification of cardiac arrhythmias remains an open
research problem due to high computational cost,
difficulties related to machine learning with unbalanced
databases, lack of databases with sufficient size and
diversity, and the absence of standard evaluation
protocols as evaluation schemes impact the performance
results [3].

The objective of this study was to develop an effective
algorithm for automatic arrhythmia detection with low
computational cost for battery-operated ECG devices.

2. Materials and Methods

The data from MIT-BIH Arrhythmia Database
(MIT-BIH AD) [7] was used in this work. The database
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consists of 48 half-hour recordings of ECG signal, with
two channels. Upper channel data that is lead 11 was used
for this work. The database consists of close to 110 000
heartbeats that was enough for machine learning
approach.

Algorithm classification results were visualized in
confusion matrix with three categories and analyzed with
following parameters: overall Accuracy (ACC = Number
of Correct Predictions/ Total Number of Predictions),
and after reduction of multiclass classification to binary
classification by converting the multiclass problem to one
class vs many classes by standard binary classification
parameters: Positive Predictive Value
(PPV = TP/(TP+FP)), Sensitivity (Se = TP/(TP+FN)),
Fl-score (F1=2*PPV*Se/(PPV+Se)) where: TP-True
Positive, FP-False Positive, FN-False Negative.

2.1.  Arrhythmia Classifier

The arrhythmia classifier proposed in this paper
leverages differences in QRS detection times across
multiple QRS detectors as a key feature for distinguishing
between various types of heartbeats (Figs. 1 and 2).
Different QRS detection algorithms apply different
sampling strategies (usually uniform sampling but also
the level-crossing sampling [14] as in [10]), distinct
signal filtering techniques (linear and non-linear) during
the preprocessing stage, and implement unique decision-
making rules [15], which naturally result in variations in
the R-peak detection times. The heartbeat classification of
the proposed classifier is based on comparison of these
differences in R-peak detection times.
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Figure 1. Parallel QRS detectors arrhythmia classifier.

The outputs of the parallel detectors are the inputs to
the decision tree classifier. The classification is divided
into three QRS morphology types: (1) Normal and Atrial
Premature, (2) Ventricular, and (3) Other. The QRS
morphology types, Normal and Atrial Premature, were

grouped together because their QRS shapes reflect similar
electrophysiological ventricular phenomena, resulting in
nearly identical ECG traces in lead I, which serves as the
basis for classification in this work. The classifier was
trained using 70% of the annotations from the MIT-BIH
AD dataset, while the remaining 30% were used for
testing. Five low-power QRS detectors were selected for
the development and testing of the arrhythmia classifier
(Fig. 1): algl [8], alg2 [9], alg3 [10], alg4 [11], and alg5
[12]. The proposed method was implemented and tested
in Python 3.10.4, using the Numpy, Pandas, and Scikit-
learn libraries.

2.2.  Feature extraction

Feature extraction is crucial to achieving success in
arrhythmia classification [3]. Figure 2 presents an excerpt
from record 200 of the MIT-BIH AD dataset. It can be
observed that for the N-type heartbeat around sample
26400, the QRS detection times vary across different
algorithms. Similarly, for the V-type heartbeat around
sample 26600, the detection times of the five algorithms
also differ.
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Figure 2. Excerpt from MIT-BIH AD record 200, R-peak
detection times of five QRS detection algorithms.
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Figure 3. Classification feature for R-peak at time 26400 (Fig.
2) calculated by subtracting R-peak detection time for each of
four algorithms from detection time of selected reference
algorithm (alg2).

Each heartbeat is associated with five values of the R-
peak detection time (expressed as a sample number) from
each of the five QRS detection algorithms algl-alg5. To
create the classification feature, one algorithm is chosen
as the reference, and the differences in detection time are
calculated by subtracting the R-peak detection time of the
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reference algorithm from the times detected by the other
four algorithms (Fig. 3).

In this work, alg2 [9] was chosen as the reference
algorithm. The classification feature was analyzed only at
time points where alg2 identified an R-peak. If any of the
other algorithms failed to detect an R-peak within a +100-
sample range (+278 ms) of alg2 detection time, the data
was supplemented by assigning a detection 100 samples
earlier than alg2 detection time for that algorithm.

2.2.  Decision Tree Classification

The decision tree classifier was selected for this work
due to its optimal balance between high classification
performance and low computational complexity. Decision
tree learning is a supervised approach commonly used in
statistics, data mining, and machine learning. The
algorithm’s inner workings are straightforward and easy
for humans to interpret, and decision trees can be easily
visualized. The computational cost of making predictions
is logarithmic with respect to the number of data points
used to train the tree. In our work, we used Scikit-learn,
which implements an optimized version of the CART
algorithm [13].

After training, the classification process requires only a
limited number of comparisons for each detected R-peak,
with the decision tree depth parameter controlling the
trade-off between generalization and computational
effort. For this work, a tree depth of 12 was selected as
the best compromise between accuracy and computational
cost. At this depth, the accuracy of the training and test
datasets is comparable. Increasing the tree depth leads to
overfitting (higher accuracy on the training set but lower
on the test set), while reducing the depth lowers both
accuracy and computational complexity.

3. Results

Two classifiers were implemented and tested. The first,
named Four+One, used alg2 [9] as the reference
algorithm, with the differences in detection times of the
other four algorithms serving as feature data. The second,
a simplified classifier called Two+One, also used alg2 as
the reference, but relied on alg3 [10] and alg5 [12] for
feature data.

3.1.  Four+One arrhythmia classifier

The confusion matrix for the Four+One classifier is
shown in Fig. 4, and Table 1 presents the results for
Positive Predictivity (PPV), Sensitivity (Se), and F1-score
(F1).

Table 1. Results for classifier Four+One for test dataset

Class PPV Se F1 Heartbeats
[%]  [%]  [%]
N+A 93.82 09551 94.14 23239

\Y 84.66 76.33 80.28 2112
Other 84.43 79.29 81.79 7639

3.2.  Two+One arrhythmia classifier

Similarly, the confusion matrix for the Two+One
classifier is displayed in Fig. 5, with the corresponding
PPV, Se, and F1 results in Table 2.
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Figure 4. Confusion matrix for Four+One arrhythmia classifier
for test dataset.
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Figure 5. Confusion matrix for Two+One arrhythmia classifier
for test dataset.
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Table 2. Results for classifier Two+One for test dataset
Class PPV  Se F1 Heartbeats
[%]  [%]  [%]
N+A 89.17 95.06 92.02 23239
\ 73.89 60.84 66.74 2112
Other 78.02 66.13 71.59 7639

4, Discussion

The overall accuracy of the Four+One classifier is
90.52%, while the Two+One classifier achieves 86.17%.
During the training phase, the model maximum depth was
set to 12 to prevent overfitting. The accuracy (ACC) for
the training dataset was 92.03% for the Four+One
classifier and 86.74% for the Two+One classifier. The the
Four+One classifier utilizes five QRS detectors, while the
Two+One classifier uses only three QRS detectors,
reducing computational cost at the expense of lower
accuracy.

In [3], results from various arrhythmia classifiers
report overall accuracy ranging from 83% to 99%. For
class V, the PPV ranges from 63% to 99%, while for class
N it ranges from 83% to 99%. Sensitivity (Se) for class V
spans from 77% to 96%, and for class N, from 80% to
99%.

5. Conclusion

The main contribution of this work is the development
of a simple arrhythmia classifier that achieves good
classification results comparing to other classifiers
reported in the literature, which often require significantly
higher computational resources and energy consumption.
To examine reducing computational complexity at the
expense of lower accuracy, two versions of the classifier
were developed and tested, achieving overall
classification accuracies of 90.52% for the Four+One
classifier, and 86.17% for the Two+One classifier.

Future work will focus on the following areas:
exploring additional features to improve discrimination
between N and A-type beats, identifying more low-power
QRS detection algorithms that, due to their different
operating principles, can enhance feature discrimination,
further simplifying the computation of the selected QRS
algorithms, and training and testing the classifiers on
additional databases beyond the MIT-BIH AD dataset.
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