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Abstract 

The main challenge for automatic classification of 

cardiac arrhythmias with battery-operated devices is to 

achieve good classification results without high 

computational load and related high energy consumption. 

In this paper, we present a heartbeat classification 

method that uses the differences in R-peak time locations 

detected by multiple low power QRS detection algorithms 

operating in parallel. The outputs of the detectors are the 

inputs to the decision tree classifier. The classification is 

divided into three QRS morphology types: (1) Normal 

and Atrial Premature, (2) Ventricular, and (3) Other. The 

overall accuracy (ACC) of the proposed classification 

method for test dataset is 90.52%. The detailed results 

are as follows: Positive Predictivity (PPV) 93.82%, 

Sensitivity (Se) 95.51% for Normal and Atrial Premature 

class; PPV=84.66%, Se=76.33% for Ventricular class; 

PPV=84.33%, Se=79.29% for Other class. The proposed 

arrhythmia classification method is applicable for real-

time mobile ischemia detection and HRV analysis. 

 

 

1. Introduction 

Wearable electronic devices are becoming increasingly 

comparable to professional health care devices [1]. While 

the primary design objective for professional medical 

equipment is to maximize performance, for wearable 

battery-operated devices, the main concerns are power 

consumption, available memory, device size and weight. 

These factors should be optimized possibly without 

compromising diagnostic performance. Another design 

criterion is the type of output received from the device, 

whether it is raw data, preprocessed data, or disease 

detection supporting medical diagnosis. The continuous 

monitoring of patients' heart during their daily activity 

began with the invention of the Holter ECG monitors in 

1949 [2]. Nevertheless, standard Holter ECG devices 

produce large volumes of data, necessitating significant 

amounts of a doctor's time for data analysis before 

reaching a diagnosis. The research on automatic detection 

of arrhythmia and other cardiac disorders accelerated with 

the computer revolution of the 1970s and continues to 

progress with machine learning and data mining [3, 4]. 

The automatic ECG-based arrhythmia detection 

classification consists of four processing steps: (1) ECG 

signal preprocessing, (2) QRS detection and signal 

heartbeat segmentation, (3) feature extraction and (4) 

arrhythmia classification [3].  

The ECG signal preprocessing and QRS detection are 

subject of research since decades and many algorithms 

have been proposed for ambulatory equipment [5] with 

battery-operated devices [6]. 

Feature extraction is the key stage in automatic 

arrhythmia classification [3]. It involves extracting 

information from heartbeats that can be used for 

classification. The most popular features include 

heartbeat interval, QRS complex duration, and points of 

the segmented ECG curve. Other methods include linear 

predictive coding, high-order accumulates, clustering, 

correlation dimension and largest Lyapunov exponent, 

Hermite transform, and local fractal dimension. The best 

performance results are reported using wavelet transform 

methods [3], although these require computationally 

intensive calculations.  

Approaches to arrhythmia classification can be 

grouped into five main categories: support vector 

machine (SVN), artificial neural network (ANN), linear 

discriminant (LD), Reservoir Computing with Logistic 

Regression (RC), and other approaches (e.g., decision 

tree, nearest neighbor, clustering, hidden Markov models, 

hyperbox classification, optimum-path forest, conditional 

random fields and rules-based models) [3].  

Despite significant research efforts, automatic 

classification of cardiac arrhythmias remains an open 

research problem due to high computational cost, 

difficulties related to machine learning with unbalanced 

databases, lack of databases with sufficient size and 

diversity, and the absence of standard evaluation 

protocols as evaluation schemes impact the performance 

results [3]. 

The objective of this study was to develop an effective 

algorithm for automatic arrhythmia detection with low 

computational cost for battery-operated ECG devices. 

 

2. Materials and Methods 

The data from MIT-BIH Arrhythmia Database 

(MIT-BIH AD) [7] was used in this work. The database 

Computing in Cardiology 2024; Vol 51 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2024.156



consists of 48 half-hour recordings of ECG signal, with 

two channels. Upper channel data that is lead II was used 

for this work. The database consists of close to 110 000 

heartbeats that was enough for machine learning 

approach.  

Algorithm classification results were visualized in 

confusion matrix with three categories and analyzed with 

following parameters: overall Accuracy (ACC = Number 

of Correct Predictions / Total Number of Predictions), 

and after reduction of multiclass classification to binary 

classification by converting the multiclass problem to one 

class vs many classes by standard binary classification 

parameters: Positive Predictive Value 

(PPV = TP/(TP+FP)), Sensitivity (Se = TP/(TP+FN)), 

F1-score (F1 = 2*PPV*Se/(PPV+Se)) where: TP-True 

Positive, FP-False Positive, FN-False Negative. 

 

2.1. Arrhythmia Classifier 

The arrhythmia classifier proposed in this paper 

leverages differences in QRS detection times across 

multiple QRS detectors as a key feature for distinguishing 

between various types of heartbeats (Figs. 1 and 2). 

Different QRS detection algorithms apply different 

sampling strategies (usually uniform sampling but also 

the level-crossing sampling [14] as in [10]), distinct 

signal filtering techniques (linear and non-linear) during 

the preprocessing stage, and implement unique decision-

making rules [15], which naturally result in variations in 

the R-peak detection times. The heartbeat classification of 

the proposed classifier is based on comparison of these 

differences in R-peak detection times.  

 

 Figure 1. Parallel QRS detectors arrhythmia classifier. 
 

The outputs of the parallel detectors are the inputs to 

the decision tree classifier. The classification is divided 

into three QRS morphology types: (1) Normal and Atrial 

Premature, (2) Ventricular, and (3) Other. The QRS 

morphology types, Normal and Atrial Premature, were 

grouped together because their QRS shapes reflect similar 

electrophysiological ventricular phenomena, resulting in 

nearly identical ECG traces in lead II, which serves as the 

basis for classification in this work. The classifier was 

trained using 70% of the annotations from the MIT-BIH 

AD dataset, while the remaining 30% were used for 

testing. Five low-power QRS detectors were selected for 

the development and testing of the arrhythmia classifier 

(Fig. 1): alg1 [8], alg2 [9], alg3 [10], alg4 [11], and alg5 

[12]. The proposed method was implemented and tested 

in Python 3.10.4, using the Numpy, Pandas, and Scikit-

learn libraries. 

 

2.2. Feature extraction 

Feature extraction is crucial to achieving success in 

arrhythmia classification [3]. Figure 2 presents an excerpt 

from record 200 of the MIT-BIH AD dataset. It can be 

observed that for the N-type heartbeat around sample 

26400, the QRS detection times vary across different 

algorithms. Similarly, for the V-type heartbeat around 

sample 26600, the detection times of the five algorithms 

also differ. 

 

 
Figure 2. Excerpt from MIT-BIH AD record 200, R-peak 

detection times of five QRS detection algorithms. 
 

      
 

Figure 3. Classification feature for R-peak at time 26400 (Fig. 

2) calculated by subtracting R-peak detection time for each of 

four algorithms from detection time of selected reference 

algorithm (alg2). 

 

Each heartbeat is associated with five values of the R-

peak detection time (expressed as a sample number) from 

each of the five QRS detection algorithms alg1-alg5. To 

create the classification feature, one algorithm is chosen 

as the reference, and the differences in detection time are 

calculated by subtracting the R-peak detection time of the 
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reference algorithm from the times detected by the other 

four algorithms (Fig. 3). 

In this work, alg2 [9] was chosen as the reference 

algorithm. The classification feature was analyzed only at 

time points where alg2 identified an R-peak. If any of the 

other algorithms failed to detect an R-peak within a ±100-

sample range (±278 ms) of alg2 detection time, the data 

was supplemented by assigning a detection 100 samples 

earlier than alg2 detection time for that algorithm. 

 

2.2. Decision Tree Classification 

The decision tree classifier was selected for this work 

due to its optimal balance between high classification 

performance and low computational complexity. Decision 

tree learning is a supervised approach commonly used in 

statistics, data mining, and machine learning. The 

algorithm’s inner workings are straightforward and easy 

for humans to interpret, and decision trees can be easily 

visualized. The computational cost of making predictions 

is logarithmic with respect to the number of data points 

used to train the tree. In our work, we used Scikit-learn, 

which implements an optimized version of the CART 

algorithm [13]. 

After training, the classification process requires only a 

limited number of comparisons for each detected R-peak, 

with the decision tree depth parameter controlling the 

trade-off between generalization and computational 

effort. For this work, a tree depth of 12 was selected as 

the best compromise between accuracy and computational 

cost. At this depth, the accuracy of the training and test 

datasets is comparable. Increasing the tree depth leads to 

overfitting (higher accuracy on the training set but lower 

on the test set), while reducing the depth lowers both 

accuracy and computational complexity. 

 

3. Results 

Two classifiers were implemented and tested. The first, 

named Four+One, used alg2 [9] as the reference 

algorithm, with the differences in detection times of the 

other four algorithms serving as feature data. The second, 

a simplified classifier called Two+One, also used alg2 as 

the reference, but relied on alg3 [10] and alg5 [12] for 

feature data.  

 

3.1. Four+One arrhythmia classifier 

The confusion matrix for the Four+One classifier is 

shown in Fig. 4, and Table 1 presents the results for 

Positive Predictivity (PPV), Sensitivity (Se), and F1-score 

(F1).  

 

 

 

Table 1. Results for classifier Four+One for test dataset 

Class  PPV 

[%] 

Se 

[%] 

F1 

[%] 

Heartbeats 

N+A  93.82 95.51 94.14 23239 

V 84.66 76.33 80.28 2112 

Other 84.43 79.29 81.79 7639 

3.2. Two+One arrhythmia classifier 

Similarly, the confusion matrix for the Two+One 

classifier is displayed in Fig. 5, with the corresponding 

PPV, Se, and F1 results in Table 2. 

 

 
Figure 4. Confusion matrix for Four+One arrhythmia classifier 

for test dataset. 

 
Figure 5. Confusion matrix for Two+One arrhythmia classifier 

for test dataset. 
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Table 2. Results for classifier Two+One for test dataset 

Class  PPV 

[%] 

Se 

[%] 

F1 

[%] 

Heartbeats 

N+A  89.17 95.06 92.02 23239 

V 73.89 60.84 66.74 2112 

Other 78.02 66.13 71.59 7639 

 

4. Discussion 

The overall accuracy of the Four+One classifier is 

90.52%, while the Two+One classifier achieves 86.17%. 

During the training phase, the model maximum depth was 

set to 12 to prevent overfitting. The accuracy (ACC) for 

the training dataset was 92.03% for the Four+One 

classifier and 86.74% for the Two+One classifier. The the 

Four+One classifier utilizes five QRS detectors, while the 

Two+One classifier uses only three QRS detectors, 

reducing computational cost at the expense of lower 

accuracy. 

In [3], results from various arrhythmia classifiers 

report overall accuracy ranging from 83% to 99%. For 

class V, the PPV ranges from 63% to 99%, while for class 

N it ranges from 83% to 99%. Sensitivity (Se) for class V 

spans from 77% to 96%, and for class N, from 80% to 

99%. 

 

5. Conclusion 

The main contribution of this work is the development 

of a simple arrhythmia classifier that achieves good 

classification results comparing to other classifiers 

reported in the literature, which often require significantly 

higher computational resources and energy consumption. 

To examine reducing computational complexity at the 

expense of lower accuracy, two versions of the classifier 

were developed and tested, achieving overall 

classification accuracies of 90.52% for the Four+One 

classifier, and 86.17% for the Two+One classifier. 

Future work will focus on the following areas: 

exploring additional features to improve discrimination 

between N and A-type beats, identifying more low-power 

QRS detection algorithms that, due to their different 

operating principles, can enhance feature discrimination, 

further simplifying the computation of the selected QRS 

algorithms, and training and testing the classifiers on 

additional databases beyond the MIT-BIH AD dataset. 
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