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Abstract

Computer models of the human heart enhance under-
standing of cardiac function but require a compromise be-
tween computational cost and numerical accuracy for clin-
ical use. Due to the high mathematical complexity of the
underlying model, the commonly used finite element dis-
cretization may not achieve the optimal balance between
efficiency, reliability, and accuracy. To investigate the im-
pact of different spatial discretization schemes on cardiac
mechanics, we realized a benchmark configuration, which
considers the hyper-elastic problem of inflating and ac-
tively contracting an idealized left ventricle with trans-
versely isotropic and nearly incompressible properties.
Comparing linear and quadratic conforming Galerkin,
discontinuous Galerkin and enriched Galerkin elements,
we found that enriched and discontinuous Galerkin meth-
ods reduced locking phenomena but with higher numbers
of degrees of freedom and computational costs, particu-
larly for the discontinuous Galerkin approach. However,
enriched Galerkin demonstrated comparable robustness to
discontinuous Galerkin with substantially fewer degrees of
freedom, presenting a favorable compromise between com-
putational efficiency and numerical robustness.

1. Introduction

The cardiac muscle can be modeled by nearly incom-
pressible anisotropic finite elasticity. Let Ω ⊂ R3 be a
bounded Lipschitz domain describing the reference geom-
etry of an idealized cardiac ventricle equipped with bound-
ary conditions on the endocardial wall ΓC and homoge-
neous Dirichlet boundary conditions on the basal plane ΓD.
Using the elasticity equations for the deformation of a
solid in steady-state equilibrium, find the displacement

u : Ω → R3 fulfilling

−div (FS) = 0, in Ω ,

u = 0, on ΓD ,

FSn = −pC Cof(F )n , on ΓC ,

(1)

with the deformation gradient F = I3 + Du, cf. [1]. We
use the second Piola-Kirchhoff stress S = Sp + Taff

⊤

decomposed into a passive part Sp and an active part rep-
resented by the active stress Ta initiating the active con-
traction of the tissue. Additionally, we consider the fiber
direction f in the reference configuration with |f | = 1. An
endocardial pressure load pC is applied on ΓC to simulate
inflation of Ω. To model anisotropic material properties of
biological tissue, we use the nonlinear hyper-elastic trans-
versely isotropic constitutive law by Guccione et al. [2]

ŴGucc(E,f) =
1

2
CGucc

(
exp(Q(E,f))− 1

)
with Q(E,f) = 4c1(f ·Ef)2+ 4c2|Ef |2+ 4c3(E : E),
cf. [3]. The strain energy function depends on the Green-
Lagrange strain tensor E = 1

2 (F
⊤F − I3), the fiber di-

rection and the material parameters CGucc, bf , bf ,s, bs and
using c1 = 1

4 (bf − 2bf ,s + bs), c2 = 1
2 (bf ,s − bs) and

c3 = 1
4bs. Near incompressibility J = detF ≈ 1 of

the material is approximated by a quasi-incompressible ap-
proach with the penalty function Wvol(J) = 1

2 (J − 1)2

characterized by Ciarlet [4, Sect. 4.10], which is comple-
mented by the volumetric penalty κvol > 0 and added to
the strain energy function, i.e.

Ŵ (E,f) = ŴGucc(E,f) + κvolWvol(J) .

2. Methods

Let Kh be an admissible and uniform triangulation of Ω
in tetrahedral elements K with Ωh =

⋃
K∈Kh

K and max-
imal element diameter h = maxK∈Kh

diam(K). For a
tetrahedron K ∈ Kh, let Vh =

⋃
K∈Kh

V K ⊂ Ω be the
vertices of the mesh. Let Fh =

⋃
K∈Kh

FK be the faces
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in Kh, with the faces FK =
⋃3

j=0 FK,j on each element
K ∈ Kh. For a face F ∈ FK , it is either F ⊂ ∂Ω or
int(F ) ⊂ Ω for all K ∈ Kh. Therefore, a face F ⊂ Ω is
called a boundary face if there exists an element K ∈ Kh

such that F = ∂K ∩ ∂Ω is a face of K. For F ∈ FK ∩Ω,
the neighboring element K ′ ∈ Kh with F ∈ FK′ is un-
ambiguously defined. Let K, K ′ ∈ Kh be two distinct
elements such that F = ∂K ∩ ∂K ′ and F ⊂ FK ∩ FK′ .
The orientation of the face normal is then given by select-
ing nF ∈ {nK , nK′ = −nK}. Furthermore, let Nh ⊂ Ω
be the set of all nodal points with NK being the number of
nodal points in a single element K ∈ Kh within the used
finite element space Vh. In the following, we use
• conforming Galerkin finite elements V cG

h [5],
• discontinuous Galerkin finite elements V dG

h [6],
• enriched Galerkin finite elements V eG

h [7].
Depending on the discretization, we define the total energy
and compute a critical point approximating the weak for-
mulation of the nonlinear system (1), cf. [4]. The resulting
discretized equation can be solved approximately by New-
ton’s method, where for every iteration k, the residual rk

and the linearization are calculated to solve the linearized
problem for uk

h ∈ V h

a(uk
h;u

k+1
h ,θh) = −rk(uk

h;θh)

for all test functions θh ∈ V h. Within the Newton iter-
ation, the linearization and the linear problem are solved
with a parallel preconditioned GMRES method [8].

2.1. Conforming Galerkin elements

Using element-wise smooth functions, which are con-
tinuous along the edges between the elements K ∈ Kh,
the conforming finite element ansatz space is defined by
V cG
h =

{
ϕh ∈ C0(Ω): ϕh|K ∈ Pp(K), K ∈ Kh

}
with

p > 0, and we use

V cG
0,h =

{
ϕh ∈ V cG,3

h : ϕh = 0 on ΓD
}
.

Approximating the hyper-elastic problem with pressure
boundary, using the Guccione material with included ac-
tive stress approach, the discrete nonlinear problem for
uh ∈ V cG

h,0 is solved for all θh ∈ V cG
h,0∫

Ω

S(uh, Ta) :
(
F⊤

hDθh

)
dx (2)

= −
∫
ΓC

pC
(
Cof(F h)n

)
· θh da

with F h = I3 +Duh, Eh = 1
2

(
F⊤

h F h − I3

)
, and stress

response S (uh, Ta) = DEŴ (Eh,f) + Taff
⊤ depend-

ing on the active stress Ta. To solve (2), we use New-
ton’s algorithm starting at u0

h ∈ V cG
h,0 and compute the

linearization depending on uh ∈ V cG
h,0 and D2

EŴ (Eh,f)

a(uh;ũh,θh) =∫
Ω

(
D2

EŴ (Eh,f)
[
sym

(
F⊤

hDθh

)
, sym

(
F⊤

hDũh

)]
+ S (uh, Ta) : sym

((
Dũh

)⊤
Dθh

))
dx

+

∫
ΓC

pC
(
(F h ×Dũh)n

)
· θh da

for all ũh, θh ∈ V cG
h,0 in each step k.

2.2. Discontinuous and enriched Galerkin

The discontinuous ansatz space of piecewise continuous
functions is defined by V dG

h =
∏

K∈Kh

V K ⊂ Pp(Ωh,R3)

with polynomial degree p > 0. Let K, K ′ ∈ Kh be
two tetrahedral elements sharing a face F ⊂ FK ∩ FK′ .
For the functions from the discontinuous ansatz space, the
transition from K to its neighboring element K ′ is discon-
tinuous. Therefore, different function values are obtained
on the edges depending on the element used to approach
a point on the face. Hence, instead of the function values,
the jump terms with θK = θh|K

JθhKF =

{(
θK − θK′

)
⊗ nK , F = ∂K ∩ ∂K ′,

θK ⊗ nK , F ∈ ∂K ∩ ∂Ω

and mean values

{{θh}}F =


1

2

(
θK + θK′

)
, F = ∂K ∩ ∂K ′,

θK , F = ∂K ∩ ∂Ω

of the function on an edge have to be considered. This
yields to the first variation

r(uh;θh) =
∑

K∈Kh

∫
K

S(uh, Ta) : (F
⊤
hDθh) dx

−
∑

F∈Fh\{ΓC}

∫
F

(
{{F hS(uh, Ta)}}F JθhKF

+ σJuhKF · {{C(F h)[Dθh]}}F
)
da

+
∑

F∈Fh\{ΓC}

γF
h

∫
F

JuhKF · JθhKF da

+

∫
ΓC

pC (Cof(F h)n) · θh da

(3)
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and the second variation for all uh, ũh, θh ∈ V dG
h

a(uh; ũh,θh) =∑
K∈Kh

∫
K

(
D2

EŴ (Eh,f)
[
sym

(
F⊤

hDθh

)
, sym

(
F⊤

hDũh

)]
+ S(uh, Ta) : sym

(
(Dũh)

⊤
Dθh

))
dx

−
∑

F∈Fh\{ΓC}

∫
F

(
{{C (F h) [Dũh]}}F JθhKF

+ σJũhKF · {{C (F h) [Dθh]}}F
)
da

+
∑

F∈Fh\{ΓC}

γF
h

∫
F

JũhKF · JθhKF da

+

∫
ΓC

pC
(
(F h ×Dũh)n

)
· θh da (4)

using the identity C(F ) = D2
F Ŵ (F ), σ ∈ {−1, 0, 1}

and the penalty parameter γF > 0 depending on the poly-
nomial degree p of the ansatz space and the mesh width h
of the discretization. The penalty parameter penalizes the
discontinuity proportionally to the jump terms. Further-
more, depending on the choice of σ, this leads to different
discontinuous Galerkin variants, namely
• Non-Symmetric Interior Penalty (NSIP),
• Incomplete Interior Penalty Galerkin (IIPG),
• Symmetric Interior Penalty (SIP).
The enriched Galerkin discretization is based on the dis-
continuous Galerkin formulation but with the ansatz space
of the conforming Galerkin discretization V cG

h , enriched
with discontinuous piecewise linear functions. That is, the
ansatz space is defined by V eG = V cG

h ⊕ V dG
h,0 with

V dG
h,0 = {u ∈ L2(Ωh,R3) : uK = cK(x− xK),

cK ∈ R, ∀K ∈ Kh} ,

where xK denotes the center of an element K ∈ Kh. The
first and second variation needed for Newton’s algorithm
to solve (1) follows the same idea as for the discontinuous
Galerkin discretization, cf. (3) and (4), and differs only
with respect to the ansatz space, which is now V eG

h .

3. Results

We reproduce the well established mechanics bench-
mark introduced by Land et al. [1], which simulates the
inflation and contraction of an idealized ventricle to verify
and compare the three spatial discretization schemes. The
problem geometry is given as a truncated ellipsoid com-
plemented with fibers as described in [1], see Fig. 2.

The basal plane is fixated in all directions and an
endocardial pressure pC = 15 kPa is applied. Ac-
tive contraction is considered as a constant active stress

Figure 1: Comparison of DoFs for linear conforming
Galerkin (left), discontinuous Galerkin (middle) and en-
riched Galerkin (right) elements. Here ( ) represents two
DoFs and ( ) represents one DoF.

ℓ = 1 ℓ = 2

ℓ = 3 ℓ = 4

Figure 2: Reference geometry for the active contraction of
an idealized ventricle for different mesh refinement levels.

Ta = 60 kPa in fiber direction and is simultaneously ap-
plied with the pressure. We use the constitutive param-
eters CGucc = 2kPa, bf = 8, bs = 2, bf ,s = 4 and
κvol = 1MPa to achieve quasi-incompressibility.

We examine the influence of different finite elements by
investigating the cavity volume and apico-basal shorten-
ing for various mesh refinements ℓ. For the discontinu-
ous and enriched Galerkin discretizations, we used the SIP
variant and suitable penalty parameters γdG

F = 2000 and
γeG
F = 200 determined in numerical experiments using ho-

motopy. In contrast to the conforming Galerkin method,
which contains the lowest number of degrees of freedom
(DoFs) in these observations, the discontinuous Galerkin
finite elements have significantly more DoFs, the enriched
Galerkin discretization on the other hand has one addi-
tional degree of freedom per element. The discontinuous
Galerkin method leads to higher computational costs. For
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instance, when running simulations in parallel on 64 pro-
cessor cores with quadratic conforming and discontinuous
Galerkin elements at the finest mesh resolution, the con-
forming method is roughly 12 times faster. This can be
mitigated through homotopy.

Comparing the cavity volume and the apex location in
Fig. 3, we observe the occurrence of locking for lowest-
order conforming elements and coarse mesh resolutions.
This well-known limitation was expected and can be con-
trolled by using higher-order elements or enriched and dis-
continuous Galerkin elements, see Fig. 3. Besides improv-
ing the locking phenomenon even for lowest-order ele-
ments using discontinuous and enriched Galerkin, we gain
more robustness and stability in contrast to the conforming
elements. All introduced finite element discretizations are
converging for both the cavity volume and the deformed
apex location.
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Figure 3: Top: Endocardial apex z-coordinate in the de-
formed configuration. Bottom: Deformed volume of the
simplified, small left ventricle. Both for linear (P1) and
quadratic (P2) elements and different mesh refinements for
conforming Galerkin (cG), enriched Galerkin (eG) and dis-
continuous Galerkin (dG) discretizations.

4. Discussion

All spatial discretizations were converging and within
acceptable ranges. Locking for lowest-order conforming
finite elements could be improved by using discontinu-
ous or enriched Galerkin elements of the same order, but
with a higher number of degrees of freedom. Discontin-
uous and enriched methods offer crucial implementation
choices for optimal performance, including optimal σ or
penalty parameter selection. The higher computational
time, especially using the discontinuous finite elements,
can be reduced by using homotopy. In particular, the non-
conforming finite elements showed more stability and ro-
bustness. In future, we want to expand our experiments by
using a more realistic heart geometry and include coupling
to the electrophysiology [9] to manifest our results.
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