

Self-gated Arterial Spin Labeling Perfusion Mapping of Myocardium Using Magnetic Resonance Imaging

Jiri Vitous^{1,2}, Ondrej Macicek¹, Radovan Jirik¹

¹ Institute of Scientific Instruments CAS, v.v.i., Brno, Czechia

² Institute of Biomedical Engineering,

Faculty of Electrical Engineering and Communications, BUT, Brno Czechia

Abstract

Myocardial perfusion MR provides useful information for diagnosis of several cardiac diseases and allows for treatment monitoring. Many methods have been proposed based on DCE-MRI or ASL. With the current slow drift from contrast agent administration in clinical setup, it is necessary to develop reliable methods that would replace DCE-MRI. ASL has always been a hope for a clean non-invasive method of perfusion measurement, but due to its issues it is still not widely accepted as a reliable method especially outside of the brain.

We propose a method for perfusion measurement based on FAIR-ASL which internally does not require ECG measurement, uses advanced acquisition tweaks and compressed sensing subspace image reconstruction. We test the method in a preclinical setup, where high B0 fields and higher heart rates are the main issues.

The acquired flow maps were comparable with state of the art methods, while giving a possibility of acquisition shortening or increased spatial resolution. We were able to obtain perfusion maps of the whole cardiac cycle with 315 μm spatial resolution and 1 mm slice thickness from a 15-minutes acquisition. The acquisition time could possibly be reduced further, by additional optimization of the pulse sequence.

1. Introduction

Myocardial perfusion magnetic resonance (MR) provides a useful biomarker for diagnosis of cardiac diseases and treatment monitoring. Multiple methods have been proposed, mainly based on first-pass Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) [1] or Flow-Alternating Inversion Recovery Arterial Spin Labeling (FAIR ASL) [2–4]. These methods suffer from low reliability due to the low signal-to-noise ratio (SNR) of the MR data, need for Electrocardiographic (ECG) triggering, breath-hold acquisition or no agreement on unified data

processing. This is even more challenging in small-animal MRI, with lower SNR and much higher cardiac and respiratory rates than in humans. Additional problems arise from generally higher B0 field (7T+) and higher gradient-system strengths used for small animal imaging, where the magnetohydrodynamic effect and noise from gradient coils basically prevent ECG measurement during scanner operation.

Therefore we propose a method based on our previous work [5], which attempts to overcome most of these uncertainties by incorporating retrospectively self-gated acquisition with advanced compressed sensing imaging acquisition and reconstruction.

2. Methods

The method described in this paper is based on the self-gated T1 mapping sequence with the FAIR module derived from [5], a 2D inversion-recovery method with spoiled-gradient-echo (SPGR) readout and radial k-space sampling. Special care must be taken when selecting an appropriate inversion pulse as the FAIR experiment relies on perfect and global inversions. In standard setups this is hard to achieve as the length of the homogeneous-B1 region in the excitation RF coil is usually shorter than rat's (or human) body length. The pulses provided by the scanner manufacturer suffer from poor adiabaticity and low bandwidth. Therefore on-the-fly computation of Shinnar–Le Roux (SLR) derived adiabatic pulses [6] was implemented. These pulses allow, thanks to lower peak values than for example standard hyperbolic secant RF pulses, for shorter pulse durations, thereby providing a wider bandwidth at a similar level of adiabaticity. On-the-fly correction for gradient imperfections was employed in order to compensate for non-ideal slice selection [7].

The dataset is split into two experiments, one with selective and one with global inversion pulse preparation. Both datasets are then binned to select appropriate respiration and cardiac phases (diastole and systole). During the acquisition it is ensured to start the inversion pulse at the

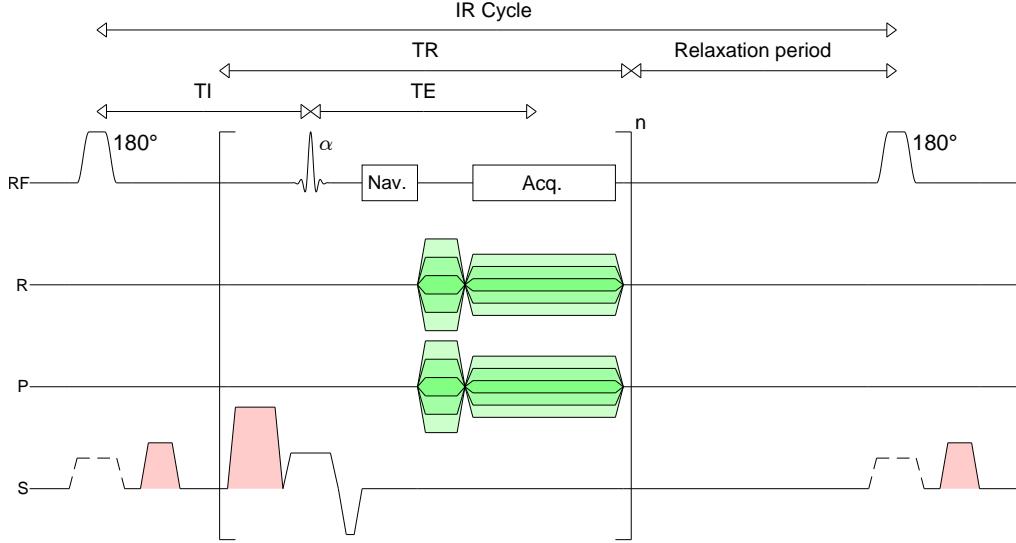


Figure 1. 2D golden-angle Spoiled Gradient Echo FAIR pulse-sequence timing diagram. The navigator is acquired within the "Nav." block.

same phase of the respiration cycle, based on prospective gating using a standard respiration pillow. In the image-reconstruction step, the radial k -space trajectory is corrected using the measured gradient transfer function [8] and the images were reconstructed using the BART reconstruction toolbox [9].

For image reconstruction a subspace based image reconstruction method [2, 10] was selected. To construct the subspace a model derived from [11] was used assuming non ideal inversion, imperfect $B1+$ homogeneity, two compartments with possibly distinct $T1$ values and arbitrary contribution to the overall signal by the two compartments [4, 12]. In total 1 000 000 curves were generated from which a subspace consisting of 6 basis functions was generated, retaining 99 % of information (chosen by the magnitude of the singular values). Spatial total variation (TV) regularization was used during the image reconstruction in order to simultaneously denoise the data. The coil sensitivities were estimated using the NLINV tool based on Non-linear inversion [13]. The curves were later fitted with the TOMROP model [11] to obtain the $T1$ values for the selective and non-selective cases. The perfusion maps were computed according to [4], modeling also the effect of the inversion pulse on blood in cardiac ventricles in the selective-inversion case.

3. Animal experiment

All measuring procedures were performed under the EU Directive no. 2010/63/EU and approved by the Animal Care Committee of Czech Academy of Sciences, Czech Republic, and Czech Governmental Animal Care Commit-

tee, in compliance with Czech Animal Protection Act No. 246/1992. The imaging was performed on a 9.4T Bruker Biospec 94/30 (Ettlingen, Germany) preclinical MR scanner, equipped with the BGA12S-HP gradient system. A volume resonator with an inner diameter of 86 mm was used as an excitation coil alongside a 4-channel array surface coil for reception. A series of anatomical images were acquired to locate the short-axis view of the myocardium. A single slice was positioned intersecting with papillary muscles in the left ventricle where the perfusion was measured. The acquisition parameters were: Matrix size: $192 \times 192 \times 1$, FOV: $40 \times 40 \times 1$ mm, 1700 excitations per inversion cycle, repetition time between excitations was set to 6 ms with flip angle of 4° and relaxation delay at the end of readout train was set to 5 seconds. The acquisition length was set to 15 minutes during which both selective and non-selective experiments were performed in sequential manner. That means several global inversion cycles followed by the same number of selective inversion cycles.

4. Results

The measured MBF values were estimated in systole to be 490 ± 108 ml/100g/min. The spread in the values was quite noticeable but usual as with other methods. There was no visual difference between the observed MBF in the anterior and posterior left-ventricular wall perfusion and $T1$ values (Fig. 2).

As a byproduct of the proposed method also global $T1$ maps were generated with $T1$ in myocardium of 1550 ms, which can serve as an additional biomarker.

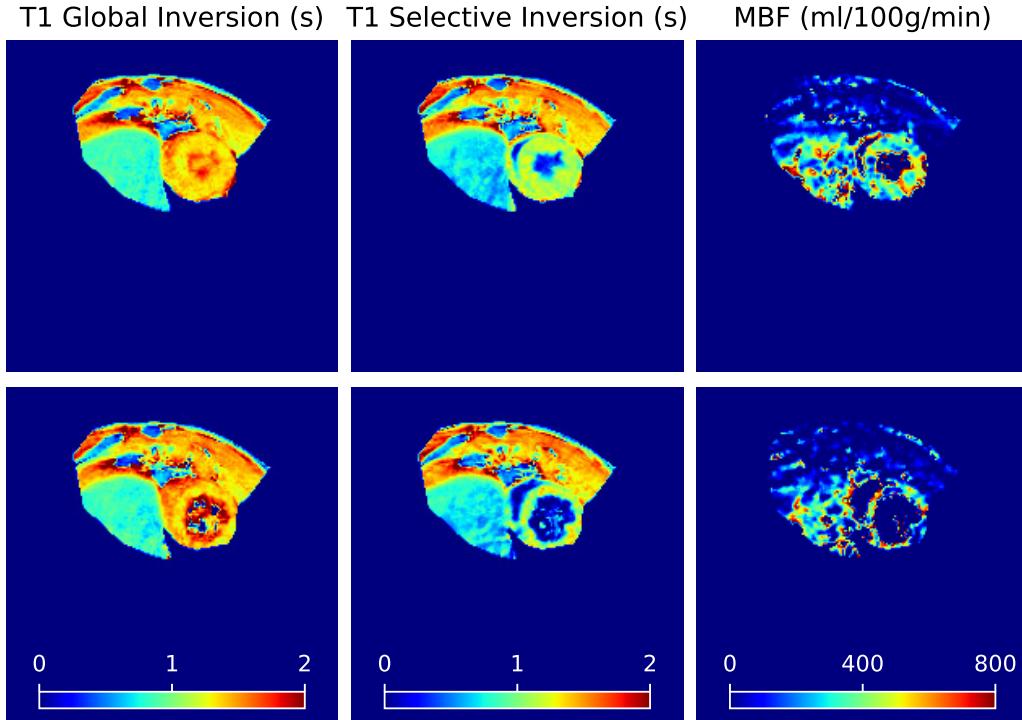


Figure 2. Resulting selective and non-selective T1 maps and Myocardial blood flow (MBF) map from a healthy rat. Top row systole, bottom row diastole.

5. Discussion

The acquired perfusion values at rest (under anesthesia) are comparable to values reported in literature [3, 14](500 and 600 ml/100g/min), though it must be stated that absolute values depend heavily on the applied anesthetics its amount and the evaluated region.

To evaluate detection of changes in pathological states, animals need to be measured under various conditions affecting MBF to show the ability of our method to detect perfusion changes, which is the natural extension of this conference paper and will be pursued in the near future. As with ASL in general SNR is the main issue, the possibility to tune the regularization weights within the image reconstruction pipeline can help in denoising the image at the cost of details. Further tuning of the regularization weight might be necessary to lower the spread in the MBF values.

Since there was no visual inhomogeneity in the T1 values and perfusion values it indicates that omitting ECG triggering during the experiment did not introduce any further errors. This is possibly due to the fact that the slice-selective inversion slab is thicker than the imaging slice. So even if the heart moves, the imaging slice still stays within the inversion slab.

The possibility of extracting T1 global maps from the ASL measurement can shorten standard clinical proto-

cols for measurement of extracellular fractional volume (ECV) in fibrotic studies and provide additional information (MBF) for little extension in scan protocol time.

Previously [5] we have shown that this T1 mapping sequence is quite resilient concerning B1 inhomogeneity thanks to low flip angle. In this experiment we've chosen a slightly higher flip angle in order to get more T1 weighing and higher SNR. This might cause lesser resilience to B1 inhomogeneities, therefore it should be investigated more in the follow-up work. On the other hand the measured global T1 values in myocardium did not differ, when compared to the ones mentioned in [5] and others. This could indicate that by giving a longer relaxation period in this experiment, we did not give up much of B1 inhomogeneity resilience after all.

It is possible that the developed method could be used also in measuring perfusion in other areas, where movement is at play. Most often ASL is performed in brain, where little to no movement is present. On the other hand our method theoretically opens a way to examine for example tumor perfusion in the proximity of heart or in the abdominal cavity, where mainly breathing artifacts are of concern.

6. Conclusion

We showed a method for measuring myocardial blood flow without the use of a contrast agent, which is based on the self-gated Look-Locker FAIR ASL principle. The resulting MBF maps corresponded to the ones reported in literature. Our method showed the possibility of measuring the blood flow with higher spatial resolution than for example [2] for little increase in measurement time and without the need for ECG triggering increasing animal welfare and experimentator comfort. The method could be possibly used in other areas of interest, where motion artifacts are a common issue.

Acknowledgments

This work was supported by Czech Science Foundation (GA22-10953S). All MR experiments were carried out by the ISI-MR facility of the Czech-BioImaging infrastructure, supported by grant LM2023050 MEYS CR.

References

[1] Pelgrim GJ, Handayani A, Dijkstra H, Prakken NHJ, Slart RHJA, Oudkerk M, Van Ooijen PMA, Vliegenthart R, Sijens PE. Quantitative myocardial perfusion with dynamic contrast-enhanced imaging in MRI and CT: Theoretical models and current implementation. *Biomed Res Int* March 2016;2016:1734190.

[2] Gutjahr FT, Kampf T, Winter P, Meyer CB, Williams T, Jakob PM, Bauer WR, Ziener CH, Helluy X. Quantification of perfusion in murine myocardium: A retrospectively triggered T1-based ASL method using model-based reconstruction. *Magn Reson Med* December 2015;74(6):1705–1715.

[3] Troalen T, Capron T, Cozzzone PJ, Bernard M, Kober F. Cine-ASL: a steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. part i. experimental study. *Magn Reson Med* November 2013;70(5):1389–1398.

[4] Kampf T, Helluy X, Gutjahr FT, Winter P, Meyer CB, Jakob PM, Bauer WR, Ziener CH. Myocardial perfusion quantification using the T1-based FAIR-ASL method: the influence of heart anatomy, cardiopulmonary blood flow and look-locker readout. *Magn Reson Med* May 2014; 71(5):1784–1797.

[5] Vitouš J, Jiřík R, Stračina T, Hendrych M, Nádeníček J, Macšík O, Tian Y, Krátká L, Dražanová E, Nováková M, Babula P, Panovský R, DiBella E, Starčuk Z. T1 mapping of myocardium in rats using self-gated golden-angle acquisition. *Magnetic Resonance in Medicine* 2024;91(1):368–380.

[6] Balchandani P, Pauly J, Spielman D. Designing adiabatic radio frequency pulses using the Shinnar-Le roux algorithm. *Magn Reson Med* September 2010;64(3):843–851.

[7] Vitouš J. Correction of gradient pulse shape distortions in radial MRI. In Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. Brno: Fakulta elektrotechniky a komunikacních technologií VUT v Brně, 2022; 264–268.

[8] Kronthaler S, Rahmer J, Börnert P, Makowski MR, Schwaiger BJ, Gersing AS, Karampinos DC. Trajectory correction based on the gradient impulse response function improves high-resolution UTE imaging of the musculoskeletal system. *Magn Reson Med* April 2021; 85(4):2001–2015.

[9] Blumenthal M, Heide M, Holme C, Juschitz M, Rapp B, Schaten P, Scholand N, Tamir J, Tönnes C, Uecker M. mrirecon/bart: version 0.9.00, December 2023. URL <https://doi.org/10.5281/zenodo.10277939>.

[10] Wang X, Tan Z, Scholand N, Roeloffs V, Uecker M. Physics-based reconstruction methods for magnetic resonance imaging. *Philos Trans A Math Phys Eng Sci* June 2021;379(2200):20200196.

[11] Brix G, Schad LR, Deimling M, Lorenz WJ. Fast and precise t1 imaging using a tomrop sequence. *Magnetic Resonance Imaging* 1990;8(4):351–356. ISSN 0730-725X.

[12] Landis CS, Li X, Telang FW, Molina PE, Palyka I, Veteck G, Springer Jr CS. Equilibrium transcytolemmal water-exchange kinetics in skeletal muscle in vivo. *Magn Reson Med* September 1999;42(3):467–478.

[13] Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion—joint estimation of coil sensitivities and image content. *Magnetic Resonance in Medicine* 2008;60(3):674–682.

[14] Kober F, Jao T, Troalen T, Nayak KS. Myocardial arterial spin labeling. *J Cardiovasc Magn Reson* April 2016; 18(1):22.

Address for correspondence:

Jiri Vitous

Institute of Scientific Instruments CAS, v.v.i. Kralovopolska 147, Brno, Czechia, 612 00
vitous@isibrno.cz