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Abstract

Our team CAUETUMN, a participating team in the
2025 PhysioNet/CinC Challenge, investigates whether
integrating physiologically interpretable features with
deep sequence representations, enhanced by conditioned
Query-based cross-attention, can improve Chagas disease
detection from standard 12-lead ECGs. We combine three
information streams: (i) a 4-layer 1D ResNet backbone for
local morphology extraction; (ii) a bidirectional GRU with
gated attention for long-range temporal context; and (iii)
handcrafted R-peak morphology feature and demographic
features (age, sex). The auxiliary features are projected
into a high-dimensional query space to conditionally at-
tend over sequence embeddings, enabling selective inte-
gration of relevant temporal patterns. Raw ECGs undergo
baseline-wander removal with an OC/CO morphological
filter. The model is trained on a combination of SaMi-Trop,
PTB-XL, and CODE-15% dataset using a loss function
that incorporates both class-specific weights to address la-
bel imbalance and group-specific weights to account for
dataset-level distribution differences. Our final Challenge
score on the hidden test set was 0.218, ranking 17th among
the 41 eligible participating teams.

1. Introduction

Chagas disease, caused by Trypanosoma cruzi, remains
a public-health concern in endemic regions and is associ-
ated with chronic cardiac manifestations detectable from
the electrocardiogram (ECG). Automated detection from
routine 12-lead ECGs would enable large-scale screening
and earlier intervention. Recent ECG classification work
has shown that deep models (CNNs, RNNs, Transform-
ers) excel at morphology and rhythm recognition, while
physiologically motivated handcrafted features bring inter-
pretability and robustness across heterogeneous datasets.

The George B. Moody PhysioNet Challenge 2025 ad-

dresses the automated detection of Chagas disease from
standard 12-lead ECGs, aiming to promote scalable, low-
cost screening strategies for populations in endemic re-
gions. The Challenge provides a unified evaluation frame-
work based on heterogeneous ECG datasets collected from
multiple international cohorts, including SaMi-Trop, PTB-
XL, and CODE-15%, which differ in acquisition condi-
tions and label reliability. This setting encourages the de-
velopment of algorithms that are not only accurate but also
interpretable and robust to domain shifts. [1–3]. Recent
ECG studies have shown that combining raw-waveform
deep representations with demographic and physiologi-
cally meaningful handcrafted features can enhance both
robustness and interpretability of diagnostic models.

In this work, we ask whether (1) fusing interpretable
R-peak/QRS morphological features and demographics
with learned sequential embeddings and (2) using an
auxiliary-conditioned, query-based cross-attention mecha-
nism can improve automated Chagas detection from 12-
lead ECGs aggregated across multiple sources (SaMi-
Trop, PTB-XL, CODE-15%). To this end, we adopt a hy-
brid ResNet–BiGRU architecture in which a 1D ResNet
with four residual stages extracts local morphological cues,
a bidirectional GRU captures long-range temporal con-
text, and auxiliary features (R-peak/QRS descriptors, age,
sex) are projected into a query space that conditionally at-
tends over sequence embeddings. To mitigate the practi-
cal challenges of label imbalance and distributional shift
across heterogeneous datasets, we employ a source-aware
weighted BCE loss with both class-specific and group-
specific weights. Within the 2025 PhysioNet/CinC Chal-
lenge framework, we evaluate the approach on held-out
test data, obtaining a score of 0.218, and ranking 17th
among the 41 eligible participating teams. These findings
support the hypothesis that compact, clinically meaningful
features complement deep sequence representations, and
that source-aware reweighting facilitates effective use of
large but weakly labeled corpora for scalable Chagas dis-
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ease screening from standard 12-lead ECGs.

2. Methods

2.1. Datasets and Preprocessing

We trained our models on data curated for the George
B. Moody PhysioNet Challenge 2025, which includes
ECGs from the SaMi-Trop, PTB-XL, and CODE-15%
datasets [4–6]. The SaMi-Trop dataset provides high-
confidence positive labels from 12-lead ECGs of Brazil-
ian patients with serologically confirmed Chagas disease
(2011–2012) [6]. The PTB-XL dataset contains ECGs
from European patients in non-endemic regions and was
used as a source of Chagas-negative controls [5]. The
CODE-15% dataset, sampled from the broader Brazilian
CODE repository [4], adds volume but relies on less reli-
able, patient-reported diagnostic labels.

All ECG recordings were standardized using a prepro-
cessing pipeline that performed a sequence of determinis-
tic operations. To ensure cross-dataset compatibility, sam-
pling rate, signal duration, and lead order were aligned to
the PTB-XL convention. First, all signals were resampled
to 500,Hz to achieve a uniform temporal resolution and to
match PTB-XL. The channels were then reordered into the
canonical 12-lead configuration (I, II, III, aVR, aVL, aVF,
V1–V6). To reduce inter-subject and inter-device variabil-
ity, we applied per-lead median-based amplitude normal-
ization by subtracting each lead’s median and scaling by
its interquartile range (IQR). We preferred median/IQR
to mean-based scaling because means are more sensi-
tive to outliers and can introduce amplitude distortions.
Baseline wander was suppressed using a morphological
open–close/close–open (OC/CO) filter [7], which attenu-
ates low-frequency drifts while preserving the morphology
of the QRS complex. Finally, all recordings were clipped
or zero-padded to a fixed duration of 10 seconds (5,000
samples). No external data were used for model training,
validation, or testing beyond these datasets.

2.2. Feature Extraction

We extracted a compact set of interpretable features
from lead II using R-peak localization and QRS delin-
eation. Specifically, we computed the median QRS width
(in milliseconds) using a delineation routine that estimates
onset and offset of each QRS complex within a ±200 ms
window centered around the detected R peaks; the mean
QRS electrical axis (in degrees) obtained from the inte-
grated areas under leads I and aVF within the delineated
QRS intervals; an RSR’ flag ratio in V1 defined as the
fraction of beats exhibiting RSR’ morphology (serving as
an indicator of conduction disturbance); and a wide-S ratio
computed from leads I and V6 as the fraction of beats with

Figure 1: ResNet-BiGRU architecture

a deep/wide S wave that meets predefined amplitude and
duration thresholds. All four morphology-derived features
were standardized across the dataset. These features were
then concatenated with demographic encodings (age and
one-hot encoded sex) to form the auxiliary feature vector
supplied to the model.

2.3. Data Augmentation

To enhance the robustness of the model, we applied
lightweight, on-the-fly signal augmentations during train-
ing via the dataset loader. Each 12-lead ECG record-
ing was subjected to random amplitude scaling, wherein
the entire signal was multiplied by a scalar drawn from
Uniform(0.85, 1.15). For temporal augmentation, long
recordings were cropped by randomly shifting the start po-
sition by up to 0.5 s (implemented as an integer offset of up
to 200 samples at 500 Hz), introducing mild temporal jit-
ter without altering beat morphology. Additional augmen-
tations (e.g., additive Gaussian noise, lead dropout) were
implemented in the codebase but were not used in the prin-
cipal experiments reported here.

2.4. Model Architecture

The proposed model architecture (Figure 1) combines
convolutional and recurrent encoders with attention-based
fusion. A 1D ResNet backbone first extracts local morpho-
logical features from 12-lead ECG signals. It begins with
a Conv 1d layer that maps the 12 input channels to 64,
followed by four residual stages composed of {3, 4, 6, 3}
blocks and output dimensions {64, 128, 256, 512}, using a
fixed kernel size of 7 and strided convolutions for progres-
sive temporal downsampling. Each block includes batch
normalization and ReLU activations.

The output of the ResNet is reshaped to (B, T, 512)
and passed to a bidirectional GRU (hidden size 128 per
direction), resulting in a 256-dimensional embedding per
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time step that captures long-range temporal dependencies
across the ECG signal. In parallel, the demographic vari-
ables (age and sex) and handcrafted ECG features are con-
catenated and projected into a 256-dimensional auxiliary
token via a linear layer and layer normalization. Simulta-
neously, the BiGRU outputs are layer normalized and used
as Key and Value in a cross-attention module, where the
auxiliary token acts as the Query. A Multi-Head Attention
(4 heads, 256-d embedding) enables the auxiliary features
to selectively attend to relevant temporal patterns.

Finally, the temporally encoded sequence is compressed
using adaptive average pooling to yield a fixed-size global
representation. This pooled representation is concatenated
with the output of the cross-attention module, forming
a 512-dimensional fused feature vector. The fused vec-
tor is passed through a 2-layer MLP with dimensions
512→50→1, producing a single logit representing the pre-
dicted probability of Chagas disease.

2.5. Loss: Weighted BCE

To address both class imbalance and dataset-level relia-
bility variations, we designed a training objective that com-
bines two weighted binary cross-entropy (wBCE) terms: a
positive-class weighted BCE (BCEα) to handle label im-
balance, and a source-aware BCE (BCEsource

α ) that modu-
lates the contribution of each sample based on its origin.

BCEα(ŷi, yi) = −
[
αyi log σ(ŷi) + (1− yi) log

(
1− σ(ŷi)

)]
BCEsource

α (ŷi, yi) = ws(i) · BCEα(ŷi, yi)

In these equations, yi ∈ {0, 1} is the ground-truth la-
bel for sample i, ŷi denotes the predicted logit, σ(ŷi) is
the corresponding sigmoid output, and α> 0 is the global
positive-class weighting factor (in our model, α = 5). By
increasing the loss on misclassified positive examples, this
formulation helps mitigate class imbalance. Furthermore,
to incorporate dataset source reliability, we introduce a
dataset-specific weighting factor ws(i)>0, where s(i) de-
notes the source of sample i. This allows the model to, for
example, emphasize positive labels from high-confidence
datasets like SaMi-Trop, while down-weighting contribu-
tions from noisier sources such as CODE-15%.

The final loss is a convex combination of the positive-
class weighted and source-aware BCE terms, weighted by
a mixing coefficient λ∈ [0, 1]. All caling factors (α, ws(i))
and the interpolation factor λ were treated as hyperparam-
eters and selected based on performance on a held-out val-
idation set.

wBCE(ŷi, yi) =
λ

N

N∑
i=1

BCEα(ŷi, yi) +
1−λ

N

N∑
i=1

BCEsource
α (ŷi, yi)

3. Experiments

3.1. Experimental Setup

The development dataset was constructed by merging
SaMi-Trop, PTB-XL, and CODE-15%. For early-stage ex-
periments and ablations, we used a pseudo-training par-
tition comprising one-sixth of the training set, including
only 10% of CODE-15% due to its lower label reliability.
In later experiments with source-aware weighted loss, the
full CODE-15% set was reinstated.

Evaluation was performed using two held-out configura-
tions. The primary evaluation set included only SaMi-Trop
and PTB-XL samples to avoid noisy labels, while the sec-
ondary evaluation set included a subset of CODE-15%. To
better reflect endemic screening conditions, the prevalence
of Chagas-positive cases in the primary evaluation set was
adjusted to approximately 2.5%.

Models were trained with the Adam optimizer (initial
learning rate 1×10−4, batch size 36) using cost-sensitive
learning with a fixed positive-class weight α = 5. For
model selection, we used a stratified 90/10 training split
with early stopping (10-epoch patience) based on valida-
tion loss. The checkpoint with the lowest validation loss
was retained for final evaluation, with training capped at
100 epochs.

3.2. Experimental Results

Table 1 presents the results across model variants. The
“Eval (w/o CODE-15%)” column reflects performance on
the same held-out partition after excluding CODE-15%,
and “Challenge score” denote the validation score obtained
during the competition phase through submissions to the
official PhysioNet/CinC Challenge evaluation server.

The ResNet–BiGRU baseline was trained without ad-
ditional handcrafted features. Because CODE-15% con-
stitutes a large fraction of the aggregated corpus and its
Chagas labels were judged to be less reliable than those
in SaMi-Trop and PTB-XL, only 10% of the available
CODE-15% examples were used when training the base-
line. Under these conditions the baseline achieved 0.388
on our held-out eval set, 0.576 on the held-out eval set ex-
cluding CODE-15%, and 0.305 on the challenge validation
set.

Augmenting the baseline with R-peak–derived features
by simple concatenation, along with the data augmen-
tation, improved performance on our internal evaluation
(0.424) and on the held-out eval set without CODE-15%
(0.736), indicating that morphology-based features give
useful complementary information. Replacing concatena-
tion with the proposed cross-attention fusion of R-peak
features and demographic features (age and sex) led to fur-
ther gains: the cross-attention variant achieved a Challenge
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Model variant Challenge score Eval Eval (w/o CODE-15)
ResNet-BiGRU 0.305 0.388 0.576
+ New features concatenate + Data augmentation N/A 0.424 0.736
+ cross-attention 0.317 0.460 0.760
+ wBCE(λ : 0.6, wCODE : 0.2, wSaMi : 3.5, wPTB : 1.5) N/A 0.480 0.672
+ wBCE(λ : 0.5, wCODE : 0.2, wSaMi : 3.5, wPTB : 7.5) 0.337 0.504 0.808
+ wBCE(λ : 0.6, wCODE : 0.8, wSaMi : 2.5, wPTB : 7.5) 0.347 0.512 0.88

Table 1: Performance of model variants. “Our evalset (w/o CODE-15)” excludes CODE-15; “N/A” means no official
submission; “Challenge score” is the validation score from the challenge server during the competition phase.

Training Validation Test Ranking
0.512 0.347 0.218 17/41

Table 2: Challenge scores for our selected entry (team
CAUETUMN), including the ranking of our team on the
hidden test set.

score of 0.317 and internal scores of 0.460 and 0.760 for
the eval set with and without CODE-15%, respectively.

We also applied a positive-class weighted and source-
aware BCE loss (wBCE), which permits inclusion of the
entire CODE-15% corpus by down-weighting its contri-
bution via source-specific scaling factors. Training with
the full CODE-15% set under wBCE improved internal
performance across the reported experiments, indicating
that source-aware reweighting can harness the representa-
tional benefit of the large CODE-15% corpus, while mit-
igating label noise. This approach yielded consistent im-
provements, achieving our best Challenge validation score
of 0.347. However, wBCE variants incurred substantially
longer runtimes; as a result, we were limited to nine train-
ing epochs, since extending to twelve epochs would have
exceeded the 72-hour wall-time limit.

Table 2 summarizes the official Challenge scores ob-
tained using our proposed ResNet-BiGRU framework with
conditioned query-based cross-attention and source-aware
wBCE loss. Our model achieved a score of 0.347 on the
hidden validation set and 0.218 on the hidden test set, rank-
ing 17th among 41 eligible participating teams.

4. Conclusions

We presented a hybrid deep learning architecture com-
bining a ResNet–BiGRU backbone with a query-based
cross-attention mechanism for automated Chagas dis-
ease screening using 12-lead ECGs. The model integrates
learned sequential embeddings with physiologically in-
terpretable R-peak/QRS morphology and patient demo-
graphics features. The model achieves strong internal dis-
crimination and, with source-aware training, outperforms a
feature-agnostic baseline; our official submission reached
a score of 0.218. These results indicate that concise clinical

cues enhance deep representations and that source-aware
loss reweighting allowed the model to leverage large-scale
but weakly labeled datasets.
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